
	

https://paruzikosokiv.nurepikis.com/192344864537173956004935875513915338614070?kavudakofomujexawipakefepawowiga=vegofomeliwigirifuderizesepegikumasitugolidikimiboxoverikixoronarogakagumuxegadetupesavoretotulidawovozilorejigipopazurerunipigoxedalivolagubiveveseramejujedovokunilamepotapuxibonefawujafevikozuvexutotumede&utm_kwd=forecasting+and+time+series+analysis+pdf&povenilozisiwovofokezuveparuvijan=tikebazujawawumafopirosuzobivadekafesaserojulidulokulanavimezegudejetirobidaxesirupelixabapekazidewonizuzumujesiwuduzikubizef

In	mathematics,	time	series	is	a	series	of	data	points	listed	with	respect	to	time;	most	commonly,	it	is	a	sequence	taken	at	successive	equal	intervals	point	in	time.	Common	examples	of	time	series	are	daily	closing	values	of	the	stock	market,	counts	of	sunspots	etc.	Time	series	analysis	comprises	methods	for	analysing	time-series	data	to	extract
meaningful	statistical	information	and	other	data	characteristics.	In	contrast,	time	series	forecasting	uses	a	model	to	predict	future	values	based	on	previously	observed	values.	In	this	article,	we	are	going	to	explore	the	following	regression	techniques	used	for	time	series	forecasting;	The	dataset	we	are	using	for	all	the	techniques	remains	the	same
and	can	be	found	here.	The	dataset	contains	weather	data	collected	for	the	city	of	Delhi	for	four	years,	from	2013	to	2017.	import	pandas	as	pd	data	=	pd.read_csv('DailyDelhiClimateTrain.csv')	data.head()	Lets	plot	the	line	chart	for	humidity.	import	plotly.express	as	px	fig	=	px.line(data,	x=data.date,	y='humidity',	title='Humidity	with	slider')
fig.update_xaxes(rangeslider_visible=True)	fig.show()	In	multiple	regression	models,	we	forecast	variables	of	interest	using	a	linear	combination	of	predictors.	Here	in	the	autoregressive	model,	we	forecast	the	variable	of	interest	using	a	linear	combination	of	past	values	of	the	variable.	The	term	autoregression	indicates	it	is	a	regression	of	variables
against	itself.				The	model	can	be	formulated	as;	Where:	Yt	is	the	value	of	time	series	at	time	t	C	is	the	intercept		Ø	is	the	slope	coefficient	Yt-p	is	the	lagged	values	of	time	series			ε	is	the	error	term		This	method	is	suitable	for	univariate	time	series	without	trend	and	a	seasonal	component.	Code	Implementation	#	AR	example	from
statsmodels.tsa.ar_model	import	AutoReg	#	fit	model	train,test	=	data[0:1000],data[1000:]	model	=	AutoReg(train.humidity,	lags=350)	model_fit	=	model.fit()	#	make	prediction	pred	=	model_fit.predict(len(train),len(test)+len(train)-1,dynamic=False)	plt.plot(test.humidity)	plt.plot(pred,color='red')	Rather	than	using	past	forecast	values	in
regression,	a	moving	average	model	uses	past	forecast	errors	in	a	regression-like	model.	In	other	words,	the	moving	average	models	the	next	sequence	as	a	linear	function	of	residual	error	from	the	mean	process	at	an	earlier	time	step.	Thus,	it	combines	both	autoregressive	and	moving	average	models.		This	method	is	suitable	for	univariate	time
series	without	trend	and	seasonal	component.	Code	Implementation:		#MA	model	from	statsmodels.tsa.arima.model	import	ARIMA	#	fit	model	model	=	ARIMA(train.humidity,order=(300,0,0))	model_fit	=	model.fit()	#	make	prediction	pred	=	model_fit.predict(len(train),len(test)+len(train)-1)	plt.plot(test.humidity)	plt.plot(pred,color='red')	It	explicitly
creates	a	suite	of	standard	structure	in	time	series	data	and	it	provides	a	simple	and	powerful	method	for	forecasting.	It	combines	both	autoregressive	and	moving	average	models	as	well	as	a	differencing	pre-processing	step	of	the	sequence	to	make	the	sequence	stationary.		This	method	supports	univariate	time	series	with	trend	and	without	seasonal
component.		The	statsmodel	library	provides	the	capability	to	fit	ARIMA	models.	Code	Implementation:	from	statsmodels.tsa.arima.model	import	ARIMA	train,test	=	data.humidity[0:1000],data.humidity[1000:]	X	=	train	size	=	int(len(X)	*	0.66)	train,	test	=	X[0:size],	X[size:len(X)]	history	=	[x	for	x	in	train]	predictions	=	list()	for	i	in	range(len(test)):
		model	=	ARIMA(history,	order=(5,1,0))			model_fit	=	model.fit()			output	=	model_fit.forecast()			pred	=	output[0]			predictions.append(pred)			true	=	test[i]			history.append(obs)			print('predicted=%f,	expected=%f'	%	(pred,	true))	plt.plot(test)	plt.plot(predictions,	color='red')	An	extension	of	ARIMA	that	supports	the	direct	modeling	of	the	seasonal
component	of	the	series	is	called	SARIMA.	The	problem	with	ARIMA	is	that	it	does	not	support	seasonal	data	i.e	repeating	cycles.	ARIMA	expects	data	that	is	not	seasonal	or	seasonal	component	removed		SARIMA	adds	the	three	hyperparameters	to	specify	the	AR,	differencing	and	moving	average	for	the	seasonal	component	of	series		This	model
suitable	for	univariate	time	series	with	trend	and	seasonal	component.	Code	Implementation:	from	statsmodels.tsa.statespace.sarimax	import	SARIMAX	size	=	int(len(X)	*	0.66)	train,	test	=	X[0:size],	X[size:len(X)]	history	=	[x	for	x	in	train]	predictions	=	list()	#	walk-forward	validation	for	t	in	range(len(test)):			model	=
SARIMAX(history,seasonal_order=(3,	1,	0,	2))			model_fit	=	model.fit()			output	=	model_fit.forecast()			pred	=	output[0]			predictions.append(pred)			true	=	test[t]			history.append(true)			print('predicted=%f,	expected=%f'	%	(pred,	true))	plt.plot(test)	plt.plot(predictions,	color='red')	The	vector	autoregression	model	can	predict	when	two	or	more	time
series	influence	each	other	means	the	relationship	involved	in	time	series	is	bi-directional.	This	model	considers	each	variable	as	a	function	of	past	values	that	are	to	be	predicted,	nothing	but	the	time	lag	of	the	series.	For	all	this,	it	considers	an	autoregressive	model.		The	main	difference	between	the	previous	model	and	VAR	is,	those	models	are
unidirectional,	where	predictors	influence	the	Y	but	not	vice-versa.	Whereas	the	VAR	model	is	bidirectional,	variables	influence	each	other.	This	model	is	suitable	for	multivariate	time	series	without	trend	and	seasonal	components.	Code	Implementation:	Load	multiple	variables:	x1	=	data.humidity.values	x2	=	data.meantemp.values	list1	=	list()	for	i
in	range(len(x1)):					x3	=	x1[i]					x4	=	x2[i]					row1	=	[x3,x4]					list1.append(row1)	Fit	and	forecast	to	few	steps	from	statsmodels.tsa.vector_ar.var_model	import	VAR	#	fit	model	model	=	VAR(list1)	model_fit	=	model.fit()	#	make	prediction	forecast	=	model_fit.forecast(model_fit.y,	steps=5)	print(forecast)	Output:	[[95.76561271	10.57589906]
	[92.08148688	11.10511153]		[88.87374484	11.59330815]		[86.07847799	12.04540676]		[83.64040052	12.46567364]]	This	article	has	seen	the	major	techniques	used	to	forecast	time	series	entities	with	a	practical	use	case.	The	most	time-consuming	thing	in	the	univariate	techniques	is	adjusting	the	lag	values;	the	proper	lag	value	decides	the	nature
of	forecasting.	The	rest	of	the	techniques	are	straightforward.			A	time	series,	as	the	name	suggests,	is	a	series	of	data	points	that	are	listed	in	chronological	order.	More	often	than	not,	time	series	are	used	to	track	the	changes	of	certain	things	over	short	and	long	periods	–	with	the	price	of	stocks	or	even	other	commodities	being	a	prime	example.
Regardless,	you’re	taking	a	closer	look	at	how	something	changes	at	regular	intervals	over	time	–	which	is	important	when	attempting	to	use	the	past	to	forecast	the	future.	Why	time	series	analysis	is	important	If	you	can	see	exactly	how	the	price	of	a	security	has	changed	over	time,	for	example,	you	can	make	a	more	educated	guess	about	what
might	happen	to	the	price	over	the	same	interval	in	the	future.	This	can	lead	to	better	and	more	informed	decision	making,	which	is	what	makes	time	series	analysis	so	important	to	so	many	sectors.	Why	time	series	data	is	unique	A	time	series	is	a	series	of	data	points	indexed	in	time.	The	fact	that	time	series	data	is	ordered	makes	it	unique	in	the
data	space	because	it	often	displays	serial	dependence.	Serial	dependence	occurs	when	the	value	of	a	datapoint	at	one	time	is	statistically	dependent	on	another	datapoint	in	another	time.	However,	this	attribute	of	time	series	data	violates	one	of	the	fundamental	assumptions	of	many	statistical	analyses	—	that	data	is	statistically	independent.	What	is
autocorrelation	in	time	series?	The	term	autocorrelation	refers	to	the	degree	of	similarity	between	A)	a	given	time	series,	and	B)	a	lagged	version	of	itself,	over	C)	successive	time	intervals.	In	other	words,	autocorrelation	is	intended	to	measure	the	relationship	between	a	variable’s	present	value	and	any	past	values	that	you	may	have	access	to.
Therefore,	a	time	series	autocorrelation	attempts	to	measure	the	current	values	of	a	variable	against	the	historical	data	of	that	variable.	It	ultimately	plots	one	series	over	the	other,	and	determines	the	degree	of	similarity	between	the	two.	For	the	sake	of	comparison,	autocorrelation	is	essentially	the	exact	same	process	that	you	would	go	through
when	calculating	the	correlation	between	two	different	sets	of	time	series	values	on	your	own.	The	major	difference	here	is	that	autocorrelation	uses	the	same	time	series	two	times:	once	in	its	original	values,	and	then	again	once	a	few	different	time	periods	have	occurred.	Autocorrelation	is	also	known	as	serial	correlation,	time	series	correlation	and
lagged	correlation.	Regardless	of	how	it’s	being	used,	autocorrelation	is	an	ideal	method	for	uncovering	trends	and	patterns	in	time	series	data	that	would	have	otherwise	gone	undiscovered.	Autocorrelation	examples	It’s	important	to	note	that	autocorrelation	in	time	series	data	is	that	not	all	fields	use	this	technique	in	exactly	the	same	way.	It’s
nothing	if	not	malleable	–	meaning	that	the	simple	principle	of	comparing	data	with	a	delayed	copy	of	itself	is	equally	valuable	in	a	wide	array	of	contexts.	Likewise,	not	all	of	the	applications	of	autocorrelation	in	various	fields	are	equivalent	–	meaning	that	they’re	using	a	simple	process	to	arrive	at	a	totally	different	end	result.	Example	1:	Regression
analysis	One	prominent	example	of	how	autocorrelation	is	commonly	used	takes	the	form	of	regression	analysis	using	time	series	data.	Here,	professionals	will	typically	use	a	standard	auto	regressive	model,	a	moving	average	model	or	a	combination	that	is	referred	to	as	an	auto	regressive	integrated	moving	average	model,	or	ARIMA	for	short.
Example	2:	Scientific	applications	of	autocorrelation	Autocorrelation	is	also	used	quite	frequently	in	terms	of	fluorescence	correlation	spectroscopy,	which	is	a	critical	part	of	understanding	molecular-level	diffusion	and	chemical	reactions	in	certain	scientific	environments.	Example	3:	Global	positioning	systems	Autocorrelation	is	also	one	of	the
primary	mathematical	techniques	at	the	heart	of	the	GPS	chip	that	is	embedded	in	smartphones	or	other	mobile	devices.	Here,	autocorrelation	is	used	to	correct	for	propagation	delay	—	meaning	the	time	shift	that	happens	when	a	carrier	signal	is	transmitted	and	before	it	is	ultimately	received	by	the	GPS	device	in	question.	This	is	how	the	GPS
always	knows	exactly	where	you	are	and	tells	you	when	and	where	to	turn	just	before	you	arrive	at	that	precise	location.	Example	4:	Signal	processing	Autocorrelation	is	also	a	very	important	technique	in	signal	processing,	which	is	a	part	of	electrical	engineering	that	focuses	on	understanding	more	about	(and	even	modifying	or	synthesizing)	signals
like	sound,	images	and	sometimes	scientific	measurements.	In	this	context,	autocorrelation	can	help	people	better	understand	repeating	events	like	musical	beats	—	which	itself	is	important	for	determining	the	proper	tempo	of	a	song.	Many	also	use	it	to	estimate	a	very	specific	pitch	in	a	musical	tone,	too.	Example	5:	Astrophysics	Astrophysics	is	that
branch	of	astronomy	that	takes	our	known	principles	of	both	physics	and	chemistry	and	applies	them	in	a	way	that	helps	us	better	understand	the	nature	of	objects	in	outer	space,	rather	than	simply	remaining	satisfied	with	knowing	their	relative	position	or	how	they’re	moving.	This	is	another	important	way	in	which	autocorrelation	is	used,	as	it	helps
professionals	study	the	spatial	distribution	between	celestial	bodies	in	the	universe	like	galaxies.	It	can	also	be	helpful	when	making	multi-wavelength	observations	of	low	mass	x-ray	binaries,	too.	Why	autocorrelation	matters	Often,	one	of	the	first	steps	in	any	data	analysis	is	performing	regression	analysis.	However,	one	of	the	assumptions	of
regression	analysis	is	that	the	data	has	no	autocorrelation.	This	can	be	frustrating	because	if	you	try	to	do	a	regression	analysis	on	data	with	autocorrelation,	then	your	analysis	will	be	misleading.	Additionally,	some	time	series	forecasting	methods	(specifically	regression	modeling)	rely	on	the	assumption	that	there	isn’t	any	autocorrelation	in	the
residuals	(the	difference	between	the	fitted	model	and	the	data).	People	often	use	the	residuals	to	assess	whether	their	model	is	a	good	fit	while	ignoring	that	assumption	that	the	residuals	have	no	autocorrelation	(or	that	the	errors	are	independent	and	identically	distributed	or	i.i.d).	This	mistake	can	mislead	people	into	believing	that	their	model	is	a
good	fit	when	in	fact	it	isn’t.	I	highly	recommend	reading	this	article	about	How	(not)	to	use	Machine	Learning	for	time	series	forecasting:	Avoiding	the	pitfalls	in	which	the	author	demonstrates	how	the	increasingly	popular	LSTM	(Long	Short	Term	Memory)	Network	can	appear	to	be	an	excellent	univariate	time	series	predictor,	when	in	reality	it’s
just	overfitting	the	data.	He	goes	further	to	explain	how	this	misconception	is	the	result	of	accuracy	metrics	failing	due	to	the	presence	of	autocorrelation.	Finally,	perhaps	the	most	compelling	aspect	of	autocorrelation	analysis	is	how	it	can	help	us	uncover	hidden	patterns	in	our	data	and	help	us	select	the	correct	forecasting	methods.	Specifically,	we
can	use	it	to	help	identify	seasonality	and	trend	in	our	time	series	data.	Additionally,	analyzing	the	autocorrelation	function	(ACF)	and	partial	autocorrelation	function	(PACF)	in	conjunction	is	necessary	for	selecting	the	appropriate	ARIMA	model	for	your	time	series	prediction.	Testing	for	autocorrelation	Any	autocorrelation	that	may	be	present	in
time	series	data	is	determined	using	a	correlogram,	also	known	as	an	ACF	plot.	This	is	used	to	help	you	determine	whether	your	series	of	numbers	is	exhibiting	autocorrelation	at	all,	at	which	point	you	can	then	begin	to	better	understand	the	pattern	that	the	values	in	the	series	may	be	predicting.	The	most	common	autocorrelation	test	is	called	the
Durbin-Watson	test,	which	was	named	after	James	Durbin	and	Geoffrey	Watson	and	was	derived	back	in	the	early	1950s.	Autocorrelation	statistics	and	test	Also	commonly	referred	to	as	the	Durbin-Watson	statistic,	this	test	is	used	to	detect	the	presence	of	autocorrelation	at	a	lag	of	one	in	any	prediction	errors	uncovered	from	a	regression	analysis.
The	precise	calculation	used	to	conduct	this	test	can	be	found	here.	Once	you	have	successfully	plugged	your	numbers	into	the	Durbin-Watson	test,	it	reports	a	statistic	on	a	value	of	0	to	4.	If	the	value	returned	is	2,	there	is	no	autocorrelation	in	your	time	series	to	speak	of.	If	the	value	is	between	0	and	2,	you’re	seeing	what	is	known	as	positive
autocorrelation	-	something	that	is	very	common	in	time	series	data.	If	the	value	is	anywhere	between	2	and	4,	that	means	there	is	a	negative	correlation	—	something	that	is	less	common	in	time	series	data,	but	that	does	occur	under	certain	circumstances.	How	to	determine	if	your	time	series	data	has	autocorrelation	For	this	exercise,	I’m	using
InfluxDB	and	the	InfluxDB	Python	CL.	I	am	using	available	data	from	the	National	Oceanic	and	Atmospheric	Administration’s	(NOAA)	Center	for	Operational	Oceanographic	Products	and	Services.	Specifically,	I	will	be	looking	at	the	water	levels	and	water	temperatures	of	a	river	in	Santa	Monica.	Dataset:	curl	-o	NOAA_data.txt	influx	-import	-
path=NOAA_data.txt	-precision=s	-database=NOAA_water_database	This	analysis	and	code	is	included	in	a	jupyter	notebook	in	this	repo.	First,	I	import	all	of	my	dependencies.	import	pandas	as	pd	import	numpy	as	np	import	matplotlib	import	matplotlib.pyplot	as	plt	from	influxdb	import	InfluxDBClient	from	statsmodels.graphics.tsaplots	import
plot_pacf	from	statsmodels.graphics.tsaplots	import	plot_acf	from	scipy.stats	import	linregress	Next	I	connect	to	the	client,	query	my	water	temperature	data,	and	plot	it.	client	=	InfluxDBClient(host='localhost',	port=8086)	h2O	=	client.query('SELECT	mean("degrees")	AS	"h2O_temp"	FROM	"NOAA_water_database"."autogen"."h2o_temperature"
GROUP	BY	time(12h)	LIMIT	60')	h2O_points	=	[p	for	p	in	h2O.get_points()]	h2O_df	=	pd.DataFrame(h2O_points)	h2O_df['time_step']	=	range(0,len(h2O_df['time']))	h2O_df.plot(kind='line',x='time_step',y='h2O_temp')	plt.show()	Fig	1.	H2O	temperature	vs.	timestep	From	looking	at	the	plot	above,	it’s	not	obviously	apparent	whether	or	not	our	data	will
have	any	autocorrelation.	For	example,	I	can’t	detect	the	presence	of	seasonality,	which	would	yield	high	autocorrelation.	I	can	calculate	the	autocorrelation	with	Pandas.Sereis.autocorr()	function	which	returns	the	value	of	the	Pearson	correlation	coefficient.	The	Pearson	correlation	coefficient	is	a	measure	of	the	linear	correlation	between	two
variables.	The	Pearson	correlation	coefficient	has	a	value	between	-1	and	1,	where	0	is	no	linear	correlation,	>0	is	a		positive	correlation,	and	0,	which	verifies	that	our	data	doesn’t	have	any	autocorrelation.	At	first,	I	found	this	result	surprising,	because	usually	the	air	temperature	on	one	day	is	highly	correlated	with	the	temperature	the	day	before.	I
assumed	the	same	would	be	true	about	water	temperature.	This	result	reminded	me	that	streams	and	rivers	don’t	have	the	same	system	behavior	as	air.	I’m	no	hydrologist,	but	I	know	spring	fed	streams	or	snowmelt	can	often	be	the	same	temperature	year-round.	Perhaps	they	exhibit	a	stationary	temperature	profile	day	to	day	where	the	mean,
variance,	and	autocorrelation	are	all	constant	(where	autocorrelation	is	=	0).	Uncovering	seasonality	with	autocorrelation	in	time	series	data	The	ACF	can	also	be	used	to	uncover	and	verify	seasonality	in	time	series	data.	Let’s	take	a	look	at	the	water	levels	from	the	same	dataset.	client	=	InfluxDBClient(host='localhost',	port=8086)	h2O_level	=
client.query('SELECT	"water_level"	FROM	"NOAA_water_database"."autogen"."h2o_feet"	WHERE	"location"=\'santa_monica\'	AND	time	>=	\'2015-08-22	22:12:00\'	AND	time	=	now()	-	INTERVAL	'90	days'	GROUP	BY	room,	_time	ORDER	BY	_time''')	print(table.to_pandas().to_markdown())	client.close()	querySQL()	c	from	influxdb_client_3	import
InfluxDBClient3	import	os	database	=	os.getenv('INFLUX_DATABASE')	token	=	os.getenv('INFLUX_TOKEN')	host="	"	def	write_line_protocol():	client	=	InfluxDBClient3(host,	database=database,	token=token)	record	=	"home,room=Living\\	Room	temp=22.2,hum=36.4,co=17i"	print("Writing	record:",	record)	client.write(record)	client.close()
write_line_protocol()	c	@main	struct	QueryCpuData:	AsyncParsableCommand	{	@Option(name:	.shortAndLong,	help:	"The	name	or	id	of	the	bucket	destination.")	private	var	bucket:	String	@Option(name:	.shortAndLong,	help:	"The	name	or	id	of	the	organization	destination.")	private	var	org:	String	@Option(name:	.shortAndLong,	help:
"Authentication	token.")	private	var	token:	String	@Option(name:	.shortAndLong,	help:	"HTTP	address	of	InfluxDB.")	private	var	url:	String	}	extension	QueryCpuData	{	mutating	func	run()	async	throws	{	//	//	Initialize	Client	with	default	Bucket	and	Organization	//	let	client	=	InfluxDBClient(url:	url,	token:	token,	options:
InfluxDBClient.InfluxDBOptions(bucket:	bucket,	org:	org))	//	Flux	query	let	query	=	"""	from(bucket:	"\(self.bucket)")	|>	range(start:	-10m)	|>	filter(fn:	(r)	=>	r["_measurement"]	==	"cpu")	|>	filter(fn:	(r)	=>	r["cpu"]	==	"cpu-total")	|>	filter(fn:	(r)	=>	r["_field"]	==	"usage_user"	or	r["_field"]	==	"usage_system")	|>	last()	"""	print("Query	to	execute:\
(query)")	let	response	=	try	await	client.queryAPI.queryRaw(query:	query)	let	csv	=	String(decoding:	response,	as:	UTF8.self)	print("InfluxDB	response:	\(csv)")	client.close()	}	}	c	import	ArgumentParser	import	Foundation	import	InfluxDBSwift	import	InfluxDBSwiftApis	@main	struct	WriteData:	AsyncParsableCommand	{	@Option(name:
.shortAndLong,	help:	"The	name	or	id	of	the	bucket	destination.")	private	var	bucket:	String	@Option(name:	.shortAndLong,	help:	"The	name	or	id	of	the	organization	destination.")	private	var	org:	String	@Option(name:	.shortAndLong,	help:	"Authentication	token.")	private	var	token:	String	@Option(name:	.shortAndLong,	help:	"HTTP	address	of
InfluxDB.")	private	var	url:	String	}	extension	WriteData	{	mutating	func	run()	async	throws	{	//	//	Initialize	Client	with	default	Bucket	and	Organization	//	let	client	=	InfluxDBClient(url:	url,	token:	token,	options:	InfluxDBClient.InfluxDBOptions(bucket:	bucket,	org:	org))	//	//	Record	defined	as	Data	Point	//	let	recordPoint	=	InfluxDBClient
.Point("demo")	.addTag(key:	"type",	value:	"point")	.addField(key:	"value",	value:	.int(2))	//	//	Record	defined	as	Data	Point	with	Timestamp	//	let	recordPointDate	=	InfluxDBClient	.Point("demo")	.addTag(key:	"type",	value:	"point-timestamp")	.addField(key:	"value",	value:	.int(2))	.time(time:	.date(Date()))	try	await	client.makeWriteAPI().write(points:
[recordPoint,	recordPointDate])	print("Written	data:\([recordPoint,	recordPointDate].map	{	"\t-	\($0)"	}.joined(separator:	""))")	print("Success!")	client.close()	}	}	c	import	{InfluxDBClient}	from	'@influxdata/influxdb3-client'	import	{tableFromArrays}	from	'apache-arrow';	const	database	=	process.env.INFLUX_DATABASE;	const	token	=
process.env.INFLUX_TOKEN;	const	host	=	"	";	async	function	main()	{	const	client	=	new	InfluxDBClient({host,	token})	const	query	=	`	SELECT	room,	DATE_BIN(INTERVAL	'1	day',	time)	AS	_time,	AVG(temp)	AS	temp,	AVG(hum)	AS	hum,	AVG(co)	AS	co	FROM	home	WHERE	time	>=	now()	-	INTERVAL	'90	days'	GROUP	BY	room,	_time	ORDER	BY
_time	`	const	result	=	await	client.query(query,	database)	const	data	=	{room:	[],	day:	[],	temp:	[]}	for	await	(const	row	of	result)	{	data.day.push(new	Date(row._time).toISOString())	data.room.push(row.room)	data.temp.push(row.temp)	}	console.table([...tableFromArrays(data)])	client.close()	}	main()	c	import	{InfluxDBClient}	from
'@influxdata/influxdb3-client'	const	database	=	process.env.INFLUX_DATABASE;	const	token	=	process.env.INFLUX_TOKEN;	const	host	=	"	";	async	function	main()	{	const	client	=	new	InfluxDBClient({host,	token})	const	record	=	"home,room=Living\\	Room	temp=22.2,hum=36.4,co=17i"	await	client.write(record,	database)	client.close()	}	main()	c
package	com.influxdb3.examples;	import	com.influxdb.v3.client.InfluxDBClient;	import	java.util.stream.Stream;	public	final	class	Query	{	private	Query()	{	//not	called	}	/**	*	@throws	Exception	*/	public	static	void	main()	throws	Exception	{	final	String	hostUrl	=	"	";	final	char[]	authToken	=	(System.getenv("INFLUX_TOKEN")).toCharArray();	final
String	database	=	System.getenv("INFLUX_DATABASE");	try	(InfluxDBClient	client	=	InfluxDBClient.getInstance(hostUrl,	authToken,	database))	{	String	sql	=	"""	SELECT	room,	DATE_BIN(INTERVAL	'1	day',	time)	AS	_time,	AVG(temp)	AS	temp,	AVG(hum)	AS	hum,	AVG(co)	AS	co	FROM	home	WHERE	time	>=	now()	-	INTERVAL	'90	days'	GROUP	BY
room,	_time	ORDER	BY	_time""";	String	layoutHeading	=	"|	%-16s	|	%-12s	|	%-6s	|%n";	System.out.printf("--%n");	System.out.printf(layoutHeading,	"day",	"room",	"temp");	System.out.printf("--%n");	String	layout	=	"|	%-16s	|	%-12s	|	%.2f	|%n";	try	(Stream	stream	=
client.query(sql))	{	stream.forEach(row	->	System.out.printf(layout,	row[1],	row[0],	row[2]));	}	}	}	}	c	package	com.influxdb3.examples;	import	com.influxdb.v3.client.InfluxDBClient;	public	final	class	Write	{	public	static	void	main()	throws	Exception	{	final	String	hostUrl	=	"	";	final	char[]	authToken	=
(System.getenv("INFLUX_TOKEN")).toCharArray();	final	String	database	=	System.getenv("INFLUX_DATABASE");	try	(InfluxDBClient	client	=	InfluxDBClient.getInstance(hostUrl,	authToken,	database))	{	String	record	=	"home,room=Living\\	Room	temp=22.2,hum=36.4,co=17i";	System.out.printf("Write	record:	%s%n",	record);
client.writeRecord(record);	}	}	}	c	InfluxDB2::Client.use('	',	'my-token',	org:	'my-org')	do	|client|	result	=	client	.create_query_api	.query_raw(query:	'from(bucket:"my-bucket")	|>	range(start:	1970-01-01)	|>	last()')	puts	result	end	c	InfluxDB2::Client.use('	',	'my-token',	bucket:	'my-bucket',	org:	'my-org',	precision:
InfluxDB2::WritePrecision::NANOSECOND)	do	|client|	write_api	=	client.create_write_api	write_api.write(data:	'h2o,location=west	value=33i	15')	end	c	package	example	import	org.apache.pekko.actor.ActorSystem	import	org.apache.pekko.stream.scaladsl.Sink	import	com.influxdb.client.scala.InfluxDBClientScalaFactory	import
com.influxdb.query.FluxRecord	import	scala.concurrent.Await	import	scala.concurrent.duration.Duration	object	InfluxDB2ScalaExample	{	implicit	val	system:	ActorSystem	=	ActorSystem("it-tests")	def	main(args:	Array[String]):	Unit	=	{	val	influxDBClient	=	InfluxDBClientScalaFactory	.create("	",	"my-token".toCharArray,	"my-org")	val	fluxQuery	=
("from(bucket:	\"my-bucket\")"	+	"	|>	range(start:	-1d)"	+	"	|>	filter(fn:	(r)	=>	(r[\"_measurement\"]	==	\"cpu\"	and	r[\"_field\"]	==	\"usage_system\"))")	//Result	is	returned	as	a	stream	val	results	=	influxDBClient.getQueryScalaApi().query(fluxQuery)	//Example	of	additional	result	stream	processing	on	client	side	val	sink	=	results	//filter	on	client	side
using	`filter`	built-in	operator	.filter(it	=>	"cpu0"	==	it.getValueByKey("cpu"))	//take	first	20	records	.take(20)	//print	results	.runWith(Sink.foreach[FluxRecord](it	=>	println(s"Measurement:	${it.getMeasurement},	value:	${it.getValue}")))	//	wait	to	finish	Await.result(sink,	Duration.Inf)	influxDBClient.close()	system.terminate()	}	}	c	package
com.influxdb.client.scala.internal	import	org.apache.pekko.Done	import	org.apache.pekko.stream.scaladsl.{Flow,	Keep,	Sink,	Source}	import	com.influxdb.client.InfluxDBClientOptions	import	com.influxdb.client.domain.WritePrecision	import	com.influxdb.client.internal.{AbstractWriteBlockingClient,	AbstractWriteClient}	import
com.influxdb.client.scala.WriteScalaApi	import	com.influxdb.client.service.WriteService	import	com.influxdb.client.write.{Point,	WriteParameters}	import	javax.annotation.Nonnull	import	scala.collection.immutable.ListMap	import	scala.concurrent.Future	import	scala.jdk.CollectionConverters._	class	WriteScalaApiImpl(@Nonnull	service:
WriteService,	@Nonnull	options:	InfluxDBClientOptions)	extends	AbstractWriteBlockingClient(service,	options)	with	WriteScalaApi	{	override	def	writeRecord(precision:	Option[WritePrecision],	bucket:	Option[String],	org:	Option[String]):	Sink[String,	Future[Done]]	=	{	Flow[String]	.map(record	=>	Seq(new
AbstractWriteClient.BatchWriteDataRecord(record)))	.toMat(Sink.foreach(batch	=>	writeHttp(precision,	bucket,	org,	batch)))(Keep.right)	}	override	def	writeRecords(precision:	Option[WritePrecision],	bucket:	Option[String],	org:	Option[String]):	Sink[Seq[String],	Future[Done]]	=	{	writeRecords(toWriteParameters(precision,	bucket,	org))	}	override
def	writeRecords(parameters:	WriteParameters):	Sink[Seq[String],	Future[Done]]	=	{	Flow[Seq[String]]	.map(records	=>	records.map(record	=>	new	AbstractWriteClient.BatchWriteDataRecord(record)))	.toMat(Sink.foreach(batch	=>	writeHttp(parameters,	batch)))(Keep.right)	}	override	def	writePoint(bucket:	Option[String],	org:	Option[String]):
Sink[Point,	Future[Done]]	=	{	Flow[Point]	.map(point	=>	(point.getPrecision,	Seq(new	AbstractWriteClient.BatchWriteDataPoint(point,	options))))	.toMat(Sink.foreach(batch	=>	writeHttp(Some(batch._1),	bucket,	org,	batch._2)))(Keep.right)	}	override	def	writePoints(bucket:	Option[String],	org:	Option[String]):	Sink[Seq[Point],	Future[Done]]	=	{
writePoints(new	WriteParameters(bucket.orNull,	org.orNull,	null,	null))	}	override	def	writePoints(parameters:	WriteParameters):	Sink[Seq[Point],	Future[Done]]	=	{	Flow[Seq[Point]]	//	create	ordered	Map	.map(records	=>	records.foldRight(ListMap.empty[WritePrecision,	Seq[Point]])	{	case	(point,	map)	=>	map.updated(point.getPrecision,	point	+:
map.getOrElse(point.getPrecision,	Seq()))	}.toList.reverse)	.map(grouped	=>	grouped.map(group	=>	(group._1,	group._2.map(point	=>	new	AbstractWriteClient.BatchWriteDataPoint(point,	options)))))	.flatMapConcat(batches	=>	Source(batches))	.toMat(Sink.foreach(batch	=>	writeHttp(parameters.copy(batch._1,	options),	batch._2)))(Keep.right)	}
override	def	writeMeasurement[M](precision:	Option[WritePrecision],	bucket:	Option[String],	org:	Option[String]):	Sink[M,	Future[Done]]	=	{	Flow[M]	.map(measurement	=>	{	val	parameters	=	toWriteParameters(precision,	bucket,	org)	Seq(toMeasurementBatch(measurement,	parameters.precisionSafe(options)))	})	.toMat(Sink.foreach(batch	=>
writeHttp(precision,	bucket,	org,	batch)))(Keep.right)	}	override	def	writeMeasurements[M](precision:	Option[WritePrecision],	bucket:	Option[String],	org:	Option[String]):	Sink[Seq[M],	Future[Done]]	=	{	writeMeasurements(toWriteParameters(precision,	bucket,	org))	}	override	def	writeMeasurements[M](parameters:	WriteParameters):
Sink[Seq[M],	Future[Done]]	=	{	Flow[Seq[M]]	.map(records	=>	records.map(record	=>	toMeasurementBatch(record,	parameters.precisionSafe(options))))	.toMat(Sink.foreach(batch	=>	writeHttp(parameters,	batch)))(Keep.right)	}	private	def	writeHttp(precision:	Option[WritePrecision],	bucket:	Option[String],	org:	Option[String],	batch:
Seq[AbstractWriteClient.BatchWriteData]):	Done	=	{	writeHttp(toWriteParameters(precision,	bucket,	org),	batch)	}	private	def	writeHttp(parameters:	WriteParameters,	batch:	Seq[AbstractWriteClient.BatchWriteData]):	Done	=	{	write(parameters,	batch.toList.asJava.stream())	Done.done()	}	private	def	toWriteParameters(precision:
Option[WritePrecision],	bucket:	Option[String],	org:	Option[String]):	WriteParameters	=	{	val	parameters	=	new	WriteParameters(bucket.orNull,	org.orNull,	precision.orNull,	null)	parameters.check(options)	parameters	}	}	c	package	influxdbv3	import	("context"	"fmt"	"io"	"os"	"text/tabwriter"	"github.com/apache/arrow/go/v12/arrow"
"github.com/InfluxCommunity/influxdb3-go/influx")	func	QuerySQL()	error	{	url	:=	"	"	token	:=	os.Getenv("INFLUX_TOKEN")	database	:=	os.Getenv("INFLUX_DATABASE")	client,	err	:=	influx.New(influx.Configs{	HostURL:	url,	AuthToken:	token,	})	defer	func	(client	*influx.Client)	{	err	:=	client.Close()	if	err	!=	nil	{	panic(err)	}	}(client)	query	:=	`
SELECT	room,	DATE_BIN(INTERVAL	'1	day',	time)	AS	_time,	AVG(temp)	AS	temp,	AVG(hum)	AS	hum,	AVG(co)	AS	co	FROM	home	WHERE	time	>=	now()	-	INTERVAL	'90	days'	GROUP	BY	room,	_time	ORDER	BY	_time	`	iterator,	err	:=	client.Query(context.Background(),	database,	query)	if	err	!=	nil	{	panic(err)	}	w	:=
tabwriter.NewWriter(io.Discard,	4,	4,	1,	'	',	0)	w.Init(os.Stdout,	0,	8,	0,	'\t',	0)	fmt.Fprintln(w,	"day\troom\ttemp")	for	iterator.Next()	{	row	:=	iterator.Value()	day	:=	(row["_time"].(arrow.Timestamp)).ToTime(arrow.TimeUnit(arrow.Nanosecond))	fmt.Fprintf(w,	"%s\t%s\t%.2f",	day,	row["room"],	row["temp"])	}	w.Flush()	return	nil	}	c	package	influxdbv3
import	("context"	"os"	"fmt"	"github.com/InfluxCommunity/influxdb3-go/influx")	func	WriteLineProtocol()	error	{	url	:=	"	"	token	:=	os.Getenv("INFLUX_TOKEN")	database	:=	os.Getenv("INFLUX_DATABASE")	client,	err	:=	influx.New(influx.Configs{	HostURL:	url,	AuthToken:	token,	})	defer	func	(client	*influx.Client)	{	err	:=	client.Close()	if	err	!=
nil	{	panic(err)	}	}(client)	record	:=	"home,room=Living\\	Room	temp=22.2,hum=36.4,co=17i"	fmt.Println("Writing	record:	",	record)	err	=	client.Write(context.Background(),	database,	[]byte(record))	if	err	!=	nil	{	panic(err)	}	return	nil	}	c	using	System;	using	System.Threading.Tasks;	using	InfluxDB3.Client;	using	InfluxDB3.Client.Query;
namespace	InfluxDBv3;	public	class	Query	{	static	async	Task	QuerySQL()	{	const	string	hostUrl	=	"	";	string?	database	=	System.Environment.GetEnvironmentVariable("INFLUX_DATABASE");	string?	authToken	=	System.Environment.GetEnvironmentVariable("INFLUX_TOKEN");	using	var	client	=	new	InfluxDBClient(hostUrl,	authToken:
authToken,	database:	database);	const	string	sql	=	@"	SELECT	room,	DATE_BIN(INTERVAL	'1	day',	time)	AS	_time,	AVG(temp)	AS	temp,	AVG(hum)	AS	hum,	AVG(co)	AS	co	FROM	home	WHERE	time	>=	now()	-	INTERVAL	'90	days'	GROUP	BY	room,	_time	ORDER	BY	_time	";	Console.WriteLine("{0,-30}{1,-15}{2,-15}",	"day",	"room",	"temp");	await
foreach	(var	row	in	client.Query(query:	sql))	{	Console.WriteLine("{0,-30}{1,-15}{2,-15}",	row[1],	row[0],	row[2]);	}	Console.WriteLine();	}	}	c	using	System;	using	System.Threading.Tasks;	using	InfluxDB3.Client;	using	InfluxDB3.Client.Query;	namespace	InfluxDBv3;	public	class	Write	{	public	static	async	Task	WriteLineProtocol()	{	const	string
hostUrl	=	"	";	string?	database	=	System.Environment.GetEnvironmentVariable("INFLUX_DATABASE");	string?	authToken	=	System.Environment.GetEnvironmentVariable("INFLUX_TOKEN");	using	var	client	=	new	InfluxDBClient(hostUrl,	authToken:	authToken,	database:	database);	const	string	record	=	"home,room=Living\\	Room
temp=22.2,hum=36.4,co=17i";	Console.WriteLine("Write	record:	{0,-30}",	record);	await	client.WriteRecordAsync(record:	record);	}	}	c	client	range(start:	-1h)	|>	drop(columns:	["_start",	"_stop"])')	data	c

