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The	Fourier	transform	is	a	generalization	of	the	complex	Fourier	series	in	the	limit	as	.	Replace	the	discrete	with	the	continuous	while	letting	.	Then	change	the	sum	to	an	integral,	and	the	equations	become	Here,	is	called	the	forward	()	Fourier	transform,	and	is	called	the	inverse	()	Fourier	transform.	The	notation	is	introduced	in	Trott	(2004,	p.xxxiv),
and	and	are	sometimes	also	used	to	denote	the	Fourier	transform	and	inverse	Fourier	transform,	respectively	(Krantz	1999,	p.202).Note	that	some	authors	(especially	physicists)	prefer	to	write	the	transform	in	terms	of	angular	frequency	instead	of	the	oscillation	frequency	.	However,	this	destroys	the	symmetry,	resulting	in	the	transform	pair	To
restore	the	symmetry	of	the	transforms,	the	convention	is	sometimes	used	(Mathews	and	Walker	1970,	p.102).In	general,	the	Fourier	transform	pair	may	be	defined	using	two	arbitrary	constants	and	as	The	Fourier	transform	of	a	function	is	implemented	the	Wolfram	Language	as	FourierTransform[f,	x,	k],	and	different	choices	of	and	can	be	used	by
passing	the	optional	FourierParameters->	a,	b	option.	By	default,	the	Wolfram	Language	takes	FourierParameters	as	.	Unfortunately,	a	number	of	other	conventions	are	in	widespread	use.	For	example,	is	used	in	modern	physics,	is	used	in	pure	mathematics	and	systems	engineering,	is	used	in	probability	theory	for	the	computation	of	the
characteristic	function,	is	used	in	classical	physics,	and	is	used	in	signal	processing.	In	this	work,	following	Bracewell	(1999,	pp.6-7),	it	is	always	assumed	that	and	unless	otherwise	stated.	This	choice	often	results	in	greatly	simplified	transforms	of	common	functions	such	as	1,	,	etc.Since	any	function	can	be	split	up	into	even	and	odd	portions	and	,	a
Fourier	transform	can	always	be	expressed	in	terms	of	the	Fourier	cosine	transform	and	Fourier	sine	transform	asA	function	has	a	forward	and	inverse	Fourier	transform	such	thatprovided	that	1.	exists.	2.	There	are	a	finite	number	of	discontinuities.	3.	The	function	has	bounded	variation.	A	sufficient	weaker	condition	is	fulfillment	of	the	Lipschitz
condition	(Ramirez	1985,	p.29).	The	smoother	a	function	(i.e.,	the	larger	the	number	of	continuous	derivatives),	the	more	compact	its	Fourier	transform.The	Fourier	transform	is	linear,	since	if	and	have	Fourier	transforms	and	,	then	Therefore,	The	Fourier	transform	is	also	symmetric	since	implies	.Let	denote	the	convolution,	then	the	transforms	of
convolutions	of	functions	have	particularly	nice	transforms,	The	first	of	these	is	derived	as	follows:	where	.There	is	also	a	somewhat	surprising	and	extremely	important	relationship	between	the	autocorrelation	and	the	Fourier	transform	known	as	the	Wiener-Khinchin	theorem.	Let	,	and	denote	the	complex	conjugate	of	,	then	the	Fourier	transform	of
the	absolute	square	of	is	given	byThe	Fourier	transform	of	a	derivative	of	a	function	is	simply	related	to	the	transform	of	the	function	itself.	ConsiderNow	use	integration	by	partswith	and	thenThe	first	term	consists	of	an	oscillating	function	times	.	But	if	the	function	is	bounded	so	that(as	any	physically	significant	signal	must	be),	then	the	term
vanishes,	leaving	This	process	can	be	iterated	for	the	th	derivative	to	yieldThe	important	modulation	theorem	of	Fourier	transforms	allows	to	be	expressed	in	terms	of	as	follows,	Since	the	derivative	of	the	Fourier	transform	is	givenbyit	follows	thatIterating	gives	the	general	formula	The	variance	of	a	Fourier	transform	isand	it	is	true	thatIf	has	the
Fourier	transform	,	then	the	Fourier	transform	has	the	shift	property	so	has	the	Fourier	transformIf	has	a	Fourier	transform	,	then	the	Fourier	transform	obeys	a	similarity	theorem.so	has	the	Fourier	transformThe	"equivalent	width"	of	a	Fourier	transform	is	The	"autocorrelation	width"	is	where	denotes	the	cross-correlation	of	and	and	is	the	complex
conjugate.Any	operation	on	which	leaves	its	area	unchanged	leaves	unchanged,	sinceThe	following	table	summarized	some	common	Fourier	transform	pairs.In	two	dimensions,	the	Fourier	transform	becomes	Similarly,	the	-dimensional	Fourier	transform	can	be	defined	for	,	by	Autocorrelation,	Convolution,	Discrete	Fourier	Transform,	Fast	Fourier
Transform,	Fourier	Series,	Fourier-Stieltjes	Transform,	Fourier	Transform--1,	Fourier	Transform--Cosine,	Fourier	Transform--Delta	Function,	Fourier	Transform--Exponential	Function,	Fourier	Transform--Gaussian,	Fourier	Transform--Heaviside	Step	Function,	Fourier	Transform--Inverse	Function,	Fourier	Transform--Lorentzian	Function,	Fourier
Transform--Ramp	Function,	Fourier	Transform--Rectangle	Function,	Fractional	Fourier	Transform,	Hankel	Transform,	Hartley	Transform,	Integral	Transform,	Laplace	Transform,	Parseval's	Theorem,	Structure	Factor,	Wiener-Khinchin	Theorem,	Winograd	Transform	Explore	this	topic	in	the	MathWorld	classroom	Arfken,	G.	"Development	of	the
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studies.	We	begin	by	discussing	Fourier	series.	We	then	generalize	that	discussion	to	consider	the	Fourier	transform.	We	next	apply	the	Fourier	transform	to	a	time	series,	and	finally	discuss	the	Fourier	transform	of	time	series	using	the	Python	programming	language.	We	begin	by	thinking	about	a	string	that	is	fixed	at	both	ends.	When	a	sinusoidal
wave	is	reflected	from	the	ends,	for	some	frequencies	the	superposition	of	the	two	waves	will	form	a	standing	wave	with	a	node	at	each	end.	We	characterize	which	standing	wave	is	set	up	on	the	string	by	an	integer	n	=	1,	2,	3,	4,	...	In	general	n	can	be	any	positive	integer,	so	there	are	in	principle	an	infinite	number	of	possible	standing	waves.	Figure
1	shows	the	first	four	possible	standing	waves.	For	a	particular	standing	wave,	any	point	on	the	string	is	executing	simple	harmonic	motion,	but	the	amplitude	depends	on	the	position	on	the	string.	We	can	write	the	strings	displacement	as	a	function	of	position	and	time,	D(x,	t),	as	the	product	of	the	amplitude	and	the	harmonic	oscillation.	For	the	n-th
standing	wave:	\[D_n(x	,t	)	=A_n	(x	)cos(\omega_n+\phi_n	)	\tag{1}\]	If	the	length	of	the	string	is	L,	then	the	amplitude	to	the	n-th	standing	wave	is:	\[A_n(x)=a_{max}sin(2\pi	\frac{x}{\lambda_n})	\tag{2}\]	where	n	is	the	wavelength	of	the	standing	wave,	which	is:	\[\lambda_n=\frac{2L}{n}	\tag{3}\]	So,	for	n	=	1	the	wavelength	as	twice	the	length
of	the	string.	For	n	=	2	the	wavelength	equals	the	length	of	the	string,	and	so	on.	This	can	be	easily	seen	in	Figure	1.	For	a	real	string,	such	as	on	a	guitar	or	violin,	the	amplitude	Ageneral(x,	t)	will	in	general	be	pretty	complicated.	However,	as	Fourier	realized	long	ago,	that	complicated	vibration	is	just	the	sum	of	the	possible	standing	waves.	In
terms	of	the	amplitude:	\[A_{general}(x)=	\sum_{n=1}^{\infty}b_nsin(2\pi	\frac{x}{\lambda_n})	\tag{4}\]	The	boundary	condition	that	the	string	is	fixed	on	both	ends	means	that	the	amplitude	varies	as	a	sine	function.	If	the	string	were	not	fixed	at	the	ends,	the	boundary	condition	would	be	that	at	the	ends	of	the	strings	the	vibration	will	be	an	anti-
node.	In	this	case,	the	amplitude	varies	as	a	cosine	function.	So	a	more	general	form	of	Equation	4	for	any	boundary	condition	is:	\[A_{general}(x)=	\sum_{n=1}^{\infty}a_ncos(2\pi	\frac{x}{\lambda_n})+	\sum_{n=1}^{\infty}b_nsin(2\pi	\frac{x}{\lambda_n})	\]	There	is	one	more	subtlety.	We	have	assumed	that	the	oscillations	are	around	y	=	0.	A
more	general	form	would	allow	for	oscillations	about	some	non-zero	value.	Then	we	have:	\[A_{general}(x)=\frac{a_0}{2}	\sum_{n=1}^{\infty}a_ncos(2\pi	\frac{x}{\lambda_n})+	\sum_{n=1}^{\infty}b_nsin(2\pi	\frac{x}{\lambda_n})	\]	Finally,	we	know	that:	\[e^{-i\theta}=cos(\theta)-isin(\theta)	\tag{5}	\]	so	we	can	re-write	the	Fourier	series	in
terms	of	complex	coefficients	cn	as:	\[A_{general}(x)=	\sum_{n=1}^{\infty}c_n	e^{-i(2\pi	\frac{x}{\lambda_n})}	\tag{6}\]	For	the	n-th	standing	wave	each	point	on	the	string	is	executing	simple	harmonic	motion	with	angular	frequency	\(\omega_n\).	Since	for	any	wave	the	frequency	\(f\)	times	the	wavelength	\(\lambda\)	is	equal	to	the	speed	of
propagation	of	the	wave	down	the	string,	we	can	relate	the	frequency	and	period	T	of	the	oscillation	to	the	wavelength	for	the	n-th	standing	wave:	\[\lambda_n	f_n=v\]	\[f_n=\frac{\omega_n}{2\pi}=\frac{v}{\lambda_n}\]	\[\omega_n=\frac{nv}{2L}	\tag{7}\]	\[T_n=\frac{1}{f_n}=\frac{2L}{nv}\]	Each	standing	wave	will	generate	a	sound	wave	of	the
same	frequency	traveling	through	the	air.	We	can	write	the	amplitude	of	the	sound	wave	as	a	function	of	time,	yn(t)	,	at	some	position	away	from	the	string	as:	\[y_n(t)=a_{max}sin(2\pi	\frac{t}{T_n}+\phi)\]	\[=a_{max}sin(\omega_nt+\phi)\]	Of	course,	in	general	the	sound	wave	will	be	some	complicated	function	of	the	time,	but	that	complicated
function	is	a	sum	of	the	sound	waves	from	the	individual	standing	waves	on	the	string.	Thus	we	can	de-compose	the	sound	wave	as	a	function	of	time	the	same	way	we	did	for	the	amplitude	of	the	standing	wave	as	a	function	of	position.	\[A_{general}(x)=\frac{a_0}{2}	\sum_{n=1}^{\infty}a_ncos(\omega_nt)+	\sum_{n=1}^{\infty}b_nsin(\omega_nt)
\tag{8}\]	Musicians	call	the	n	=	1	term	the	fundamental:	it	represents	the	note	that	the	string	is	playing.	The	terms	with	n	>	1	are	called	the	overtones,	and	the	relative	amounts	and	phases	of	the	overtones	determines	the	timbre	of	the	sound,	so	that	a	violin	and	a	Les	Paul	guitar	playing	the	same	note	sound	different.	Integrating	sine	and	cosine
functions	for	different	values	of	the	frequency	shows	that	the	terms	in	the	Fourier	series	are	orthogonal.	In	terms	of	the	Kronecker	delta:	\[\delta_{nm}	\equiv	\left\{	\begin{array}{rcl}	1	&	m=n	\\	0	&	m	eq	n	\end{array}\right.	\]	the	orthogonality	conditions	are:	\[	\int_0^{2pi/\omega_1}	sin(n\omega_1t	)sin(m\omega_1t	)dt	=\delta_{nm}\frac{\pi}
{\omega_1}	\]	\[\int_0^{2pi/\omega_1}	cos(n\omega_1t	)cos(m\omega_1t	)dt	=\delta_{nm}\frac{\pi}{\omega_1}\tag{9}\]	\[\int_0^{2pi/\omega_1}	sin(n\omega_1t	)cos(	m\omega_1t	)dt	=0	~~Any~	m,n\]	You	will	want	to	notice	that	the	limits	of	the	integrations	in	Equations	9	are	from	0	to	T1,	the	period	of	the	n	=	1	standing	wave.	Given	the	function
ygeneral(t),	we	can	find	the	coefficients	of	the	Fourier	series	in	Equation	8	using	the	orthogonality	conditions	to	get:	\[a_n=\frac{\omega_1}{\pi}\int_0^{2pi/\omega_1}y_{general}(t)	cos(n\omega_1dt	)dt\]	\[b_n=\frac{\omega_1}{\pi}\int_0^{2pi/\omega_1}	y_{general}(t)	sin(n\omega_1dt	)dt	\tag{9}\]	In	Equation	10	we	found	the	coefficients	of	the
Fourier	expansion	by	integrating	from	0	to	T1.	We	could	just	have	well	considered	integrating	from	-T1	/	2	to	+T1	/	2	or	even	from	\(-\infty\)	to	\(+\infty\)	.	But	what	about	a	non-periodic	function	over	an	infinite	range?	Although	we	won't	go	through	all	of	the	mathematical	details,	it	is	not	too	difficult	to	show	that	we	can	write	the	equivalent	of
Equation	10	for	this	case	using	the	complex	notation	introduced	in	Equation	6	to	write:	\[Y(\omega)	=	\int_{-\infty}^{+\infty}	y(t)e^{-i\omega	t}dt	\tag{11}\]	Equation	11	defines	the	Fourier	transform.	Physically	we	have	resolved	a	single	pulse	or	wave	packet	y(t)	into	it	frequency	components.	Notice	that	Y	is	only	a	function	of	the	angular	frequency,
so	we	have	transformed	a	function	of	time	into	a	function	of	angular	frequency.	We	can	also	define	the	inverse	Fourier	transform	which	takes	a	function	of	angular	frequency	and	produces	a	function	of	time:	\[y(t)	=\frac{1}{2\pi}	\int_{-\infty}^{+\infty}	Y(\omega)e^{+i\omega	t}d\omega	\tag{12}\]	If	you	look	in	other	sources,	you	may	see	other
conventions	for	the	Fourier	transform	and	the	inverse	Fourier	transform.	Some	normalize	the	integral	of	Equation	11	by	multiplying	the	integral	by	1/	\(\sqrt{2\pi}\)	and	multiplying	the	integral	in	Equation	12	by	the	same	factor	of	1/	\(\sqrt{2\pi}\)	.	Still	other	sources	have	the	Fourier	transform	involve	a	positive	exponential,	with	the	inverse
transform	using	the	negative	exponential.	We	will	always	use	the	conventions	of	Equations	11	and	12	in	this	document.	Our	first	example	will	be	10	oscillations	of	a	sine	wave	with	angular	frequency	\(\omega\)	=	2.5	s-1	\[y(t)	=	\left\{	\begin{array}{rcl}	sin(2.5t)	&	-4\pi	\leq	t	\leq	+4\pi	\\	0	&	|t|>4\pi	\end{array}\right.	\tag{13}\]	The	Fourier	transform
is:	\[Y(\omega)	=	\int_{-\infty}^{+\infty}	y(t)e^{-i\omega	t}	dt\]	\[	=	\int_{-4\pi}^{+4\pi}	sin(2.5t)e^{-i\omega	t}dt	\tag{14}\]	Since	y(t)	is	a	sine	function	,	from	Equation	5	we	expect	the	Fourier	transform	Equation	14	to	be	purely	imaginary.	Figure	2(a)	shows	the	function,	Equation	13,	and	Figure	2(b)	shows	the	imaginary	part	of	the	result	of	the
Fourier	transform,	Equation	14.	There	are	at	least	two	things	to	notice	in	Figure	2.	First,	the	Fourier	transform	has	a	negative	peak	at	2.5	s-1	and	a	positive	peak	at	2.5	s-1.	The	negative	peak	at	+2.5	s-1	is	minus	the	sine	component	of	the	frequency	spectrum.	It	is	negative	because	we	chose	the	negative	exponential	for	the	Fourier	transform,
Equation	11,	and	according	to	Equation	5	the	imaginary	part	is	minus	the	sine	component.	Signs	are	always	a	bit	of	a	pain	in	Fourier	transforms,	especially	since,	as	already	mentioned,	different	implementations	use	different	conventions.	The	positive	peak	at	2.5	s-1	arises	because	the	angular	frequency	could	just	as	well	have	a	negative	value	as
positive	one,	but	the	sine	function	is	anti	symmetric,	sin(\(\theta\)	)	=-sin(\(-\theta\)	.	The	second	thing	that	you	should	notice	is	that	there	is	significant	overlap	between	the	curve	of	the	positive	angular	frequency	solution	and	the	negative	angular	frequency	one.	Nonetheless,	Figure	2(b)	shows	that	to	generate	a	finite	sine	wave	pulse	requires	the
superposition	of	a	number	of	frequencies	in	addition	to	the	frequency	of	the	sine	wave	itself.	There	is	also	a	computational	issue	of	which	you	should	be	aware.	Although	it	is	possible	to	evaluate	Equation	14	by	hand	giving	a	purely	imaginary	solution,	rounding	errors	mean	that	doing	it	with	software	such	as	Mathematica	will	produce	small	but	non-
zero	real	terms.	For	this	case	the	largest	value	of	the	calculated	real	component	of	the	Fourier	transform	as	evaluated	by	Mathematica	is	a	negligible	-5	x10-17.	This	property	of	software	evaluation	of	Fourier	transforms	will	occur	again	in	this	document.	We	will	now	take	the	Fourier	transform	of	the	same	sin(2.5t)	function,	but	this	time	for	30
oscillations.	\[y(t)	=	\left\{	\begin{array}{rcl}	sin(2.5t)	&	-12\pi	\leq	t	\leq	+12\pi	\\	0	&	|t|>12\pi	\end{array}\right.	\tag{15}\]	The	Fourier	transform	is:	\[	=	\int_{-12\pi}^{+12\pi}	sin(2.5t)e^{-i\omega	t}dt	\tag{15}\]	Figure	3	shows	the	function	and	its	Fourier	transform.	Comparing	with	Figure	2,	you	can	see	that	the	overall	shape	of	the	Fourier
transform	is	the	same,	with	the	same	peaks	at	2.5	s-1	and	+2.5	s-1,	but	the	distribution	is	narrower,	so	the	two	peaks	have	less	overlap.	If	we	imagine	increasing	the	time	for	which	the	sine	wave	is	non-zero	to	the	range	\(-\infty\)	to	\(+\infty\)	the	width	of	the	peaks	will	become	zero.	Physically	this	means	that	there	is	only	one	frequency	component	of
an	infinitely	long	sine	wave	pulse,	and	it	is	equal	to	the	frequency	of	the	sine	wave	itself.	In	Physics,	being	able	to	resolve	a	signal	into	its	frequency	components	is	immensely	useful.	However,	there	is	more	Physics	contained	in	the	Fourier	transform.	First,	you	may	have	already	recognized	the	shape	of	the	Fourier	transforms	in	Figures	2(b)	and	3(b).
They	are	identical	to	the	wave	amplitudes	of	single-slit	diffraction.	This	is	not	a	coincidence.	Although	we	have	been	thinking	of	the	variable	t	as	time,	imagine	for	a	moment	that	it	is	a	position.	Then	Equation	13	is	describing	diffraction	through	a	slit	whose	width	is	8\(\pi\)	,	while	Equation	15	is	for	a	slit	whose	width	is	24\(\pi\)	.	So	the	fact	that	the
width	of	the	distribution	in	Figure	3(b)	is	narrower	than	the	distribution	in	Figure	2(b)	is	telling	us	that	the	width	of	the	diffraction	pattern	for	a	narrow	slit	is	greater	than	the	width	for	a	wide	slit.	Here	is	some	more	Physics	hidden	in	the	Fourier	transform.	If	we	have	N	oscillations	of	a	sine	wave	pulse	of	the	form	sin(\(\omega\)t)	,	it	is	not	too	difficult
to	show	that	the	width	of	the	central	maximum	of	the	Fourier	transform	is:	\[\Delta	\omega	=	\frac{\omega_0}{N}	\tag{17}\]	If	we	think	about	the	photon	aspect	of	an	electromagnetic	sine	wave,	the	energy	of	the	photon	is:	\[E_{photon}	=hf_0=\hslash	\omega_0	\tag{18}\]	But	since	the	frequency	of	the	Fourier	transform	has	angular	frequencies	in
addition	to	\(\omega_0\)	,	there	is	an	uncertainty	in	the	true	value	of	the	angular	frequency.	It	is	fairly	reasonable	to	take	value	of	the	uncertainty	from	the	width	of	the	central	maximum,	Equation	17.	So	there	is	an	uncertainty	in	the	energy	of	the	photon:	\[E_{photon}	=\hslash	\Delta	\omega	\tag{19}\]	\[=\hslash	\frac{	\omega_0	}{N}\]	If	we	are	at
some	position	in	space,	the	time	t	it	takes	for	the	wave	to	pass	us	is	NT0=N2\(\pi\)/\(\omega_0\)	.	This	is	the	uncertainty	in	the	time	when	the	photon	actually	passes	us,	so:	\[	\Delta	t_{photon}=2\pi	\frac{N}{\omega_0}	\tag{20}	\]	The	product	of	these	two	uncertainties,	our	uncertainty	in	the	energy	of	the	photon	and	our	uncertainty	about	when	it
had	that	energy,	is:	\[	\Delta	E_{photon}	\Delta	t_{photon}=	\hslash	\frac{	\omega_0	}{N}	\times	2\pi	\frac{N}{\omega_0}	tag{21}\]	Thus	the	product	of	the	uncertainties	is	Plancks	constant,	independent	of	the	value	of	the	number	of	oscillations	N	or	the	frequency	\(\omega_0\)	of	the	sine	wave.	Heisenbergs	uncertainty	principle	actually	states:	\[
\Delta	E_{photon}	\Delta	t_{photon}	\geq	\hslash	\tag{22}\]	We	conclude	that	the	uncertainty	principle	is	related	to	the	Fourier	transform.	Although	theorists	often	deal	with	continuous	functions,	real	experimental	data	is	almost	always	a	series	of	discrete	data	points.	For	3	oscillations	of	the	sin(2.5	t)	wave	we	were	considering	in	the	previous
section,	then,	actual	data	might	look	like	the	dots	in	Figure	4.	Of	course,	good	data	would	include	errors	in	at	least	the	dependent	variable	if	not	both	variables,	but	we	will	ignore	that	in	this	document.	Figure	4	If	we	have	n	data	points,	the	data	will	look	like:	\[y_0,y_1,y_2,....,y_{n-1}	\tag{23}\]	Such	data	are	called	a	time	series.	In	a	sort-of	poor
convention,	the	sampling	interval	is	usually	given	the	symbol	\(\Delta\).	For	the	data	of	Figure	4,	\(\Delta\)=0.20	s	and	n	=	38.	For	any	sampling	interval,	the	times	corresponding	to	the	data	points	of	Equation	23	are:	\[0,\Delta,2\Delta,....,(n-1)\Delta	\tag{24}\]	For	time	series,	we	replace	the	integral	in	the	Fourier	transform,	Equation	11,	with	a	sum
and	the	differential	time	dt	with	the	sampling	interval	\(\Delta\):	\[	Y_j=Y(\omega_j)=(\sum_{k=0}^{n-1}y_k	e^{-i\omega_jt_k})	\times	\Delta	\tag{25}	\]	Equation	25	is	the	discrete	Fourier	transform.	As	we	shall	soon	see,	we	can	set	the	value	of	\(\Delta\)	to	1	without	loss	of	generality.	The	inverse	discrete	Fourier	transform	gets	back	the	values	of	yk
with:	\[	y_k=	\frac{1}{2\pi}(\sum_{j=0}^{n-1}Y_j	e^{+i\omega_jt_k})	\times	\delta	\omega	\tag{26}	\]	Soon	we	will	discuss	the	\(\delta	\omega\)	factor	in	Equation	26,	which	replaces	d\(\omega\)	in	the	continuous	inverse	transform	Equation	12.	Counting	from	0,	as	in	Equations	23,	24,	25,	and	26,	may	be	new	to	you.	In	our	everyday	life	we
commonly	count	from	1,	as	in	one,	two,	three,	,	n.	This	is	not	how	counting	is	done	for	time	series,	or	many	modern	computer	languages	such	as	C++,	Java,	and	Python,	which	count	as	zero,	one,	two,	,	n	1.1	This	can	take	a	bit	of	time	to	get	used	to.	This	counting	issue	is	why	the	current	year,	2011,	is	in	the	21st	century,	not	the	20th.	To	actually	use
Equation	25	or	26,	we	need	to	know	the	times	tk	and	angular	frequencies	\(\omega_j\)	.	The	times	are	just:	\[t_k=	k	\Delta	\tag{27}\]	The	determine	\(\omega_j\)	we	will	think	about	Fourier	series.	The	value	of	\(\omega_0\)=	0	and	corresponds	to	a	DC	component	in	the	signal.	If	the	signal	is	periodic	with	a	period	\(T=n\Delta\)	,	then	the	next	value	of
the	angular	frequency	is:	\[\omega_1=\frac{2\pi}{T}\]	The	next	term	is:	\[\omega_2=2	\times	\frac{2\pi}{T}\]	We	see,	then,	that	in	general:	\[\omega_j=j\frac{2\pi}{T}=j\frac{2\pi}{n\Delta}	\tag{28}\]	Using	Equation	27	and	28,	the	discrete	Fourier	transform	Equation	25	becomes:	\[	Y_j=(\sum_{k=0}^{n-1}y_k	e^{-i2\pi	\frac{jk}{n}})	\times	\Delta
\tag{29}	\]	In	the	definition	of	the	inverse	discrete	Fourier	transform,	Equation	26,	the	sum	is	multiplied	by	\(\delta	\omega\),	which	is	how	much	the	angular	frequency	\(\omega_j\)	changes	as	j	goes	to	j	+	1.	We	have	just	seen	that	this	is:	\[\delta	\omega=\frac{2\pi}{T}=\frac{2\pi}{n\Delta}	\tag{30}\]	So	the	inverse	discrete	Fourier	transform,
Equation	26,	becomes:	\[	y_k=	\frac{1}{n}(\sum_{j=0}^{n-1}Y_j	e^{+i2\pi	\frac{jk}{n}})	\times	\frac{1}{\Delta}	\tag{31}	\]	Now,	when	we	actually	use	the	discrete	Fourier	transform,	we	end	up	with	a	series	of	values	\(Y_0,Y_1,Y_2,....,Y_{n-1}\)	.	If	we	want	to	know	the	frequency	of	the	\(Y_j\)	term,	we	can	just	use	Equation	28.	So	the	factor	of	\
(\Delta\)	that	multiplies	the	sum	of	Equation	29	is	not	needed,	and	we	just	set	its	value	to	1.	Similarly,	the	inverse	discrete	Fourier	transform	returns	a	series	of	values	\(y_0,y_1,y_2,....,y_{n-1}\)	and	if	we	want	to	the	know	the	time	of	the	value	of	\(y_k\)	,	we	can	just	use	Equation	27.	So	for	the	inverse	discrete	Fourier	transform	we	can	similarly	just	set
\(\Delta=1\).	So	the	final	form	of	the	discrete	Fourier	transform	is:	\[	Y_j=\sum_{k=0}^{n-1}y_k	e^{-i2\pi	\frac{jk}{n}}	\tag{32}	\]	and	the	inverse	discrete	Fourier	transform	is:	\[	y_k=	\frac{1}{n}\sum_{j=0}^{n-1}Y_j	e^{+i2\pi	\frac{jk}{n}}	\tag{33}	\]	Figure	5	shows	the	imaginary	part	of	the	discrete	Fourier	transform	of	the	sampled	sine	wave
of	Figure	4	as	calculated	by	Mathematica.	Figure	5.	The	imaginary	part	of	discrete	Fourier	transform	of	3	cycles	of	the	wave	sin(2.5	t)	with	\(\Delta\)=	0.20	s.	The	number	of	samples	of	the	time	series	n	=	38.	There	may	be	a	major	surprise	for	you	in	Figure	5.	You	can	see	the	negative	peak,	which	for	the	continuous	Fourier	transforms	Figures	2(b)	and
3(b)	corresponded	to	the	angular	frequency	of	2.5	s-1.	But	the	positive	peak,	corresponding	to	the	angular	frequency	of	12	2.5	s-1,	is	now	to	the	far	right.	What	has	happened	is	that	the	discrete	Fourier	transform	just	returns	a	series	of	n	=	38	values:	\[Y_0,Y_1,Y_3,....,Y_{n-3},Y_{n-2},Y_{n-1}	\]	The	first	19	of	these	correspond	to	the	positive	angular
frequency	values	of	Figures	2(b)	and	3(b).	The	other	19	values,	corresponding	to	the	negative	angular	frequencies,	have	just	been	appended	to	the	end	of	the	first	19	values.	Although	the	discrete	Fourier	transform	shown	in	Figure	5	was	evaluated	with	Mathematica,	this	way	of	handling	the	negative	frequency	solutions	is	standard	for	most
implementations,	including	Pythons	implementation	discussed	in	the	next	section.2	One	reason	why	is	that	usually	we	are	not	interested	in	the	negative	frequency	alias	solution,	so	can	just	ignore	it	or	even	just	throw	out	the	last	half	of	the	Fourier	transform	data.	There	may	be	another	small	surprise	in	Figure	5.	The	amplitude	of	the	sampled	sine
wave	is	just	1,	but	the	absolute	value	of	minimum	and	maximum	values	of	the	transform	is	approximately	19,	which	is	one-half	the	number	of	samples	n	=	38.	This	is	a	consequence	of	the	normalization	conditions	of	Equations	32	and	33.	A	symmetric	normalization	would	multiply	the	sum	by	2/n	for	the	discrete	Fourier	transform,	and	replace	the	1/n
factor	for	the	inverse	transform	by	the	same	factor	of	2/n.	Using	this	convention,	the	maximum	and	minimum	values	would	be	what	you	might	expect.	This	was	also	an	issue	for	the	continuous	Fourier	transforms	of	the	previous	section,	but	we	ignored	that	in	the	discussion.	The	negative	peak	in	the	imaginary	part	of	the	Fourier	transform	shown	in
Figure	5	occurs	at	the	4th	value,	which	is	j	=	3.	From	Equation	28,	this	corresponds	to	an	angular	frequency	of:	\[	\omega_3	=3\frac{2\pi}{n\Delta}=3\frac{2\pi}{3	\times(0.20s)}=2.48s^{-1}\]	It	is	reasonable	to	assume	that	the	error	in	this	value	of	one-half	of	the	change	in	the	value	of	the	angular	frequency	from	j	to	j	+1,	\(\delta	\omega	/	2\)	.	From
Equation	30	this	is:	\[	\frac{\delta	\omega}{2}	=\frac{1}{2}\frac{2\pi}{n\Delta}=3\frac{\pi}{3	\times(0.20s)}=0.41s^{-1}\]	So	the	frequency	corresponding	to	the	peak	is:	2	Full	disclosure:	by	default	Mathematicas	implementation	of	the	discrete	Fourier	transform	does	not	match	the	normalization	conditions	of	Equation	32,	so	I	have	added	a
normalization	factor	to	the	data	of	Figure	5	to	force	it	to	match	the	normalization	used	throughout	this	document.	Pythons	implementation,	discussed	in	the	next	section,	does	match	the	conventions	of	Equations	32	and	33.	\[\omega_3=(2.48	\pm	0.41)s^{-1}	\]	which	is	well	within	errors	of	the	actual	frequency	of	the	signal,	2.5	s-1.	Increasing	the
number	of	samples	will	reduce	the	uncertainty	in	the	calculated	value	of	the	frequency.	We	saw	in	our	discussion	of	the	continuous	Fourier	transform	of	a	sine	function	that	evaluating	the	integrals	in	software	gave	very	small	extraneous	values	for	the	real	parts	of	the	transform.	This	is	also	an	issue	for	the	discrete	Fourier	transform,	but	is
compounded	by	the	fact	that	the	signal	is	sampled	and	not	continuous.	For	the	example	of	Figure	5,	the	maximum	magnitude	of	the	real	part	of	the	Fourier	transform	is	about	8%	of	the	maximum	magnitude	of	the	imaginary	part.	The	effect	of	the	sampling	time	\(\Delta\)	on	Fourier	transforms	is	an	immense	topic,	which	we	will	not	discuss	here
beyond	saying	that	in	general	the	smaller	the	sampling	time	the	better.	The	actual	way	that	the	discrete	Fourier	transforms,	Equations	32	and	32,	are	implemented	means	that	there	is	a	caveat	associated	with	the	statement	that	the	smaller	the	sampling	time	the	better.	If	we	evaluate	Equation	32	using	brute	force	we	can	define:	\[W=	e^{-i
\frac{2\pi}{n}}	\tag{34}\]	Then	the	discrete	Fourier	transform	becomes:	\[	Y_j=\sum_{k=0}^{n-1}y_k	e^{-i2\pi	\frac{jk}{n}}=\sum_{k=0}^{n-1}y_k	W^{jk}	\tag{35}	\]	We	can	think	of	yk	as	a	vector	of	length	n,	and	W	as	a	matrix	of	dimension	\(n	\times	k\).	The	multiplication	of	the	two	requires	n2	calculations,	and	evaluating	the	sum	requires	a
smaller	number	of	operations	to	generate	the	powers	of	W.	Thus	the	number	of	calculations	necessary	to	evaluate	the	Fourier	transform	is	proportional	to	n2.	Doubling	the	number	of	points	in	the	time	series	quadruples	the	time	necessary	to	calculate	the	transform,	and	tripling	the	number	of	points	requires	nine	times	as	much	time.	For	large	data
sets,	then,	the	time	necessary	to	calculate	the	discrete	Fourier	transform	can	become	very	large.	However,	there	is	a	brilliant	alternative	way	of	doing	the	calculation	that	is	was	reinvented	by	Cooley	and	Tukey	in	1965.3	It	is	called	the	fast	Fourier	transform.	The	idea	is	that	we	split	the	sum	into	two	parts:	3	The	algorithm	was	originally	invented	by
Gauss	in	1805.	\[	Y_j=\sum_{k=0}^{n/2-1}y_{2k}	e^{-i2\pi	\frac{j2k}{n}}	+	\sum_{k=0}^{n/2-1}y_{2k+1}	e^{-i2\pi	\frac{j(2k+1)}{n}}	\tag{36}	\]	The	first	sum	involves	the	even	terms	y2k,	and	the	second	one	the	odd	terms	y(2k	+	1).	Using	the	definition	of	W	in	Equation	34	we	can	write	this	as:	\[	Y_j=	Y_j^{k~even}	+W^k	\sum_{k=0}^{n/2-
1}y_{2k+1}	e^{-i2\pi	\frac{jk}{n/2}}	\]	\[=Y_j^{k~even}	+W^k	Y_j^{k~odd}	\tag{37}\]	We	can	apply	the	same	procedure	recursively.	Eventually,	if	n	is	a	power	of	two,	we	end	up	with	no	summations	at	all,	just	a	product	of	terms.	An	analogy	to	the	algorithm	of	the	fast	Fourier	transform	is	a	method	to	determine	the	number	of	hairs	on	your	head.
Just	counting	all	the	hairs	would	be	a	very	long	process.	However,	imagine	that	you	divide	your	scalp	into	two	equal	pieces.	Then	the	total	number	of	hairs	on	your	head	is	2	times	the	number	of	hairs	in	one	of	the	two	pieces.	If	you	divide	one	of	those	pieces	in	half,	the	total	number	of	hairs	on	your	head	is	22	times	the	number	in	that	sample.	Dividing
that	piece	in	half	means	that	the	total	is	23	times	the	number	in	the	new	sample.	If	you	keep	dividing	the	area	of	your	scalp	in	half	a	total	of	M	times,	then	eventually	you	get	down	to	a	small	enough	piece	that	you	can	easily	count	the	number	of	hairs	in	it,	and	the	total	number	of	hairs	is	2M	times	the	hairs	in	the	sample	area.	In	the	limit	where	you
divide	the	areas	of	your	scalp	enough	times	that	the	sample	contains	just	one	hair,	then	the	number	of	hairs	on	your	head	is	just	2M	.	It	turns	out	that	the	number	of	calculations	required	using	the	fast	Fourier	transform	is	proportional	to	nlog2n.	So	doubling	the	number	of	points	in	the	time	series	only	doubles	the	time	necessary	to	do	the	calculation,
and	tripling	the	number	of	points	increases	the	time	by	about	4.75.	This	is	a	big	win	over	the	brute	force	method	of	doing	the	calculation.	Any	competent	implementation	of	the	fast	Fourier	transform	does	not	require	that	the	number	of	data	points	in	the	times	series	be	a	power	of	two,	but	if	not	it	will	need	to	use	some	brute	force	calculations	at	least
at	the	end.	In	one	test,	a	time	series	of	e-t/100	was	generated	for	t	from	0	to	1000.001	with	\(\Delta\)=0.001.	The	number	of	data	points	was	n	=	1	000	001,	and	in	one	computing	environment	Mathematica	took	0.89	s	to	calculate	the	Fourier	transform.	The	value	of	the	last	data	point	is	e1000/100	=	0.0000454,	which	is	nearly	zero.	48	575	zeroes	were
appended	to	the	dataset,	so	the	total	length	became	1	048	576	=	20	2	.	Mathematica	took	0.20	s	to	calculate	the	Fourier	transform	of	this	larger	dataset,	which	is	over	four	times	faster.	15	Although	speed	of	calculation	is	not	an	issue	for	the	small	dataset	of	38	samples	of	a	sine	wave	that	we	are	considering	here,	the	lesson	to	be	learned	is	that	for
large	datasets	for	which	you	wish	to	use	the	fast	Fourier	transform,	you	should	design	the	experiment	so	that	the	number	of	samples	is	a	power	of	2.	The	Python	programming	language	has	an	implementation	of	the	fast	Fourier	transform	in	its	scipy	library.	Below	we	will	write	a	single	program,	but	will	introduce	it	a	few	lines	at	a	time.	You	will	almost
always	want	to	use	the	pylab	library	when	doing	scientific	work	in	Python,	so	programs	should	usually	start	by	importing	at	least	these	two	libraries:	from	pylab	import	*	from	scipy	import	*	To	generate	the	38	data	points	of	a	time	series	of	sin(2.5	t)	with	0.20	as	in	Figure	4	of	the	previous	section,	the	following	added	lines	of	code	will	do	the	trick:	tmin
=	0	tmax	=	2.4	*	pi	delta	=	0.2	t	=	arange(tmin,	tmax,	delta)	y	=	sin(2.5	*	t)	You	can	then	do	a	plot	of	the	dataset	with:	figure(6)	plot(t,	y,	'bo')	title('y(t)	=	sin(2.5	t)')	xlabel('t	(s)')	ylabel('y(t)')	show()	The	result	is	Figure	6	below,	which	looks	similar	to	Figure	4	of	the	previous	section.	To	compute	the	discrete	Fourier	transform	using	the	fast	Fourier
transform	routine	just	requires	one	line	calling	the	fast	Fourier	routine	fft()	from	scipy:	Y	=	fft(y)	To	plot	the	imaginary	parts	of	the	transform,	as	in	Figure	5	of	the	previous	section:	figure(7)	plot(imag(Y))	title(Imaginary	part	of	the	Fourier	transform	of	sin(2.5	t))	xlabel(j)	ylabel(Yj)	show()	As	part	of	the	Fourier	transform	package,	scipy	includes	an
implementation	of	Equation	28	which	calculates	the	frequencies	of	the	transform.	It	is	called	fftfreq(),	and	takes	the	length	of	the	times	series	and	the	sampling	interval	as	its	arguments.	You	should	be	aware	that	although	the	Python	routines	for	the	trig	functions	such	as	sin()	take	radians	as	their	arguments,	fftfreq()	returns	frequencies	in	Hz,	not	the
angular	frequencies	in	s-1.	Since	everything	in	this	document	so	far	has	used	angular	frequencies,	the	following	lines	calculate	those	angular	frequencies:	n	=	len(y)	#	Calculate	frequencies	in	Hz	freq	=	fftfreq(n,	delta)	#	Convert	to	angular	frequencies	w	=	2	*	pi	*	freq	Notice	in	the	above	that	we	have	calculated	the	number	of	points	in	the	time
series	n	from	the	actual	time	series	instead	of	hard-coding	the	number,	and	have	similarly	used	the	definition	of	the	time	step	\(\Delta\)=	delta	whose	value	was	defined	earlier	in	the	code.	Both	of	these	are	good	coding	practice.	If	we	plot	Yj	versus	w,	Python	and	the	implementation	of	fftfreq()	are	pretty	smart,	and	sorts	out	the	positive	and	negative
angular	frequency	components	automatically.	figure(8)	plot(w,	imag(Y))	title('Imaginary	part	of	the	Fourier	transform	of	sin(2.5	t)')	xlabel('w	(rad/s)')	ylabel('Yj')	show()	You	clearly	see	the	negative	peak	at	\(\omega\)=+2.5	s-1	and	the	positive	one	at	\(\omega\)=2.5	s-1.	You	may	wish	to	compare	this	figure	to	Figures	2(b)	and	3(b)	for	the	continuous
Fourier	transform.	The	article	introduces	the	Fourier	Transform	as	a	method	for	analyzing	non-periodic	functions	over	infinite	intervals,	presenting	its	mathematical	formulation,	properties,	and	an	example.	It	also	highlights	a	wide	range	of	real-world	applications	across	fields	such	as	signal	processing,	communications,	image	and	audio	processing,
physics,	and	data	analysis.	WHY	Fourier	Transform?If	a	function	f	(t)	is	not	a	periodic	and	is	defined	on	an	infinite	interval,	we	cannot	represent	it	by	Fourier	series.	It	may	be	possible,	however,	to	consider	the	function	to	be	periodic	with	an	infinite	period.	In	this	section	we	shall	consider	this	case	in	a	non-rigorous	way,	but	the	results	may	be
obtained	rigorously	if	f	(t)	satisfies	the	following	conditions:$\int\limits_{-\infty	}^{\infty	}{\left|	f(t)	\right|}dt$	is	finite	means	$\int\limits_{-\infty	}^{\infty	}{\left|	f(t)	\right|}dt


