
	

Continue

https://feedproxy.google.com/~r/1eyvgo/aqOO/~3/DOqCt-cVA4I/uplcv?utm_term=c+compile+linux

C	compile	linux

In	this	tutorial,	you	will	configure	Visual	Studio	Code	to	use	the	GCC	C++	compiler	(g++)	and	GDB	debugger	on	Linux.	GCC	stands	for	GNU	Compiler	Collection;	GDB	is	the	GNU	debugger.	After	configuring	VS	Code,	you	will	compile	and	debug	a	simple	C++	program	in	VS	Code.	This	tutorial	does	not	teach	you	GCC,	GDB,	Ubuntu	or	the	C++
language.	For	those	subjects,	there	are	many	good	resources	available	on	the	Web.	If	you	have	trouble,	feel	free	to	file	an	issue	for	this	tutorial	in	the	VS	Code	documentation	repository.	Prerequisites	To	successfully	complete	this	tutorial,	you	must	do	the	following:	Ensure	GCC	is	installed	Although	you'll	use	VS	Code	to	edit	your	source	code,	you'll
compile	the	source	code	on	Linux	using	the	g++	compiler.	You'll	also	use	GDB	to	debug.	These	tools	are	not	installed	by	default	on	Ubuntu,	so	you	have	to	install	them.	Fortunately,	that's	easy.	First,	check	to	see	whether	GCC	is	already	installed.	To	verify	whether	it	is,	open	a	Terminal	window	and	enter	the	following	command:	gcc	-v	If	GCC	isn't
installed,	run	the	following	command	from	the	terminal	window	to	update	the	Ubuntu	package	lists.	An	out-of-date	Linux	distribution	can	sometimes	interfere	with	attempts	to	install	new	packages.	sudo	apt-get	update	Next	install	the	GNU	compiler	tools	and	the	GDB	debugger	with	this	command:	sudo	apt-get	install	build-essential	gdb	Create	Hello
World	From	the	terminal	window,	create	an	empty	folder	called	projects	to	store	your	VS	Code	projects.	Then	create	a	subfolder	called	helloworld,	navigate	into	it,	and	open	VS	Code	in	that	folder	by	entering	the	following	commands:	mkdir	projects	cd	projects	mkdir	helloworld	cd	helloworld	code	.	The	code	.	command	opens	VS	Code	in	the	current
working	folder,	which	becomes	your	"workspace".	As	you	go	through	the	tutorial,	you	will	create	three	files	in	a	.vscode	folder	in	the	workspace:	tasks.json	(compiler	build	settings)	launch.json	(debugger	settings)	c_cpp_properties.json	(compiler	path	and	IntelliSense	settings)	Add	hello	world	source	code	file	In	the	File	Explorer	title	bar,	select	New
File	and	name	the	file	helloworld.cpp.	Paste	in	the	following	source	code:	#include	#include	#include	using	namespace	std;	int	main()	{	vector	msg	{"Hello",	"C++",	"World",	"from",	"VS	Code",	"and	the	C++	extension!"};	for	(const	string&	word	:	msg)	{	cout	Start	Debugging.	Before	you	start	stepping	through	the	code,	let's	take	a	moment	to	notice
several	changes	in	the	user	interface:	The	Integrated	Terminal	appears	at	the	bottom	of	the	source	code	editor.	In	the	Debug	Output	tab,	you	see	output	that	indicates	the	debugger	is	up	and	running.	The	editor	highlights	the	first	statement	in	the	main	method.	This	is	a	breakpoint	that	the	C++	extension	automatically	sets	for	you:	The	Run	view	on
the	left	shows	debugging	information.	You'll	see	an	example	later	in	the	tutorial.	At	the	top	of	the	code	editor,	a	debugging	control	panel	appears.	You	can	move	this	around	the	screen	by	grabbing	the	dots	on	the	left	side.	Step	through	the	code	Now	you're	ready	to	start	stepping	through	the	code.	Click	or	press	the	Step	over	icon	in	the	debugging
control	panel.	This	will	advance	program	execution	to	the	first	line	of	the	for	loop,	and	skip	over	all	the	internal	function	calls	within	the	vector	and	string	classes	that	are	invoked	when	the	msg	variable	is	created	and	initialized.	Notice	the	change	in	the	Variables	window	on	the	side.	Press	Step	over	again	to	advance	to	the	next	statement	in	this
program	(skipping	over	all	the	internal	code	that	is	executed	to	initialize	the	loop).	Now,	the	Variables	window	shows	information	about	the	loop	variables.	Press	Step	over	again	to	execute	the	cout	statement.	(Note	that	as	of	the	March	2019	release,	the	C++	extension	does	not	print	any	output	to	the	Debug	Console	until	the	last	cout	executes.)	If	you
like,	you	can	keep	pressing	Step	over	until	all	the	words	in	the	vector	have	been	printed	to	the	console.	But	if	you	are	curious,	try	pressing	the	Step	Into	button	to	step	through	source	code	in	the	C++	standard	library!	To	return	to	your	own	code,	one	way	is	to	keep	pressing	Step	over.	Another	way	is	to	set	a	breakpoint	in	your	code	by	switching	to	the
helloworld.cpp	tab	in	the	code	editor,	putting	the	insertion	point	somewhere	on	the	cout	statement	inside	the	loop,	and	pressing	F9.	A	red	dot	appears	in	the	gutter	on	the	left	to	indicate	that	a	breakpoint	has	been	set	on	this	line.	Then	press	F5	to	start	execution	from	the	current	line	in	the	standard	library	header.	Execution	will	break	on	cout.	If	you
like,	you	can	press	F9	again	to	toggle	off	the	breakpoint.	When	the	loop	has	completed,	you	can	see	the	output	in	the	Debug	Console	tab	of	the	integrated	terminal,	along	with	some	other	diagnostic	information	that	is	output	by	GDB.	Set	a	watch	To	keep	track	of	the	value	of	a	variable	as	your	program	executes,	set	a	watch	on	the	variable.	Place	the
insertion	point	inside	the	loop.	In	the	Watch	window,	click	the	plus	sign	and	in	the	text	box,	type	word,	which	is	the	name	of	the	loop	variable.	Now	view	the	Watch	window	as	you	step	through	the	loop.	To	quickly	view	the	value	of	any	variable	while	execution	is	paused	on	a	breakpoint,	you	can	hover	over	it	with	the	mouse	pointer.	C/C++
configurations	If	you	want	more	control	over	the	C/C++	extension,	you	can	create	a	c_cpp_properties.json	file,	which	will	allow	you	to	change	settings	such	as	the	path	to	the	compiler,	include	paths,	C++	standard	(default	is	C++17),	and	more.	You	can	view	the	C/C++	configuration	UI	by	running	the	command	C/C++:	Edit	Configurations	(UI)	from
the	Command	Palette	(⇧⌘P	(Windows,	Linux	Ctrl+Shift+P)).	This	opens	the	C/C++	Configurations	page.	When	you	make	changes	here,	VS	Code	writes	them	to	a	file	called	c_cpp_properties.json	in	the	.vscode	folder.	You	only	need	to	modify	the	Include	path	setting	if	your	program	includes	header	files	that	are	not	in	your	workspace	or	in	the
standard	library	path.	Visual	Studio	Code	places	these	settings	in	.vscode/c_cpp_properties.json.	If	you	open	that	file	directly,	it	should	look	something	like	this:	{	"configurations":	[{	"name":	"Linux",	"includePath":	["${workspaceFolder}/**"],	"defines":	[],	"compilerPath":	"/usr/bin/gcc",	"cStandard":	"c11",	"cppStandard":	"c++17",
"intelliSenseMode":	"clang-x64"	}],	"version":	4	}	Reusing	your	C++	configuration	VS	Code	is	now	configured	to	use	gcc	on	Linux.	The	configuration	applies	to	the	current	workspace.	To	reuse	the	configuration,	just	copy	the	JSON	files	to	a	.vscode	folder	in	a	new	project	folder	(workspace)	and	change	the	names	of	the	source	file(s)	and	executable	as
needed.	Troubleshooting	The	most	common	cause	of	errors	(such	as	undefined	_main,	or	attempting	to	link	with	file	built	for	unknown-unsupported	file	format,	and	so	on)	occurs	when	helloworld.cpp	is	not	the	active	file	when	you	start	a	build	or	start	debugging.	This	is	because	the	compiler	is	trying	to	compile	something	that	isn't	source	code,	like
your	launch.json,	tasks.json,	or	c_cpp_properties.json	file.	Next	steps	3/19/2020	The	full	form	of	GCC	is	GNU	Compiler	Collection.	GCC	has	compilers	for	C,	C++,	Objective-C,	Ada,	Go,	Fortran	and	many	more	programming	languages.	These	are	all	open	source	and	free	to	use.	In	this	article,	I	will	show	you	how	to	install	GCC	and	compile	C	programs
in	Linux	using	GCC.	I	will	use	Debian	9	Stretch	for	the	demonstration.	But	I	will	show	you	how	to	install	GCC	on	wide	variety	of	Linux	distributions.	Let’s	get	started.	On	Ubuntu	and	Debian	GNU/Linux	distributions,	GCC	is	really	easy	to	install	as	all	the	required	packages	are	available	in	the	official	package	repository	of	Ubuntu	and	Debian.	There	is	a
meta	package	called	build-essential,	which	installs	everything	you	need	in	order	to	compile	C	and	C++	programs	on	Ubuntu	and	Debian	GNU/Linux	distribution.	First,	update	the	APT	package	repository	cache	with	the	following	command:	The	APT	package	repository	cache	should	be	updated.	Now	install	build-essential	with	the	following	command:	$
sudo	apt	install	build-essential	Now	press	y	and	then	press	to	continue.	GCC	should	be	installed.	Now	you	can	check	whether	GCC	is	working	with	the	following	command:	Installing	GCC	on	Linux	Mint:	You	can	install	GCC	on	Linux	Mint	the	same	way	as	in	Ubuntu/Debian	as	shown	in	the	earlier	section	of	this	article.	Installing	GCC	on	CentOS	7	and
Fedora:	On	CentOS	7	and	Fedora,	GCC	is	easier	to	install	as	well.	The	required	packages	are	available	in	the	official	package	repository	of	CentOS	7	and	Fedora.	You	can	install	the	Development	Tools	group	to	install	all	the	required	packages	to	compile	C	and	C++	programs	on	CentOS	7	and	Fedora.	First,	update	the	YUM	database	with	the	following
command:	YUM	database	should	be	updated.	Now	install	Development	Tools	group	packages	with	the	following	command:	$	sudo	yum	group	install	"Development	Tools"	Now	press	y	and	then	press	to	continue.	If	you	see	this	message,	just	press	y	and	then	press	.	GCC	should	be	installed.	Now	you	can	check	whether	GCC	is	working	with	the
following	command:	Installing	GCC	on	Arch	Linux:	You	can	install	GCC	on	Arch	Linux	too.	All	the	required	packages	are	available	in	the	Arch	package	repository.	Arch	also	has	a	meta	package	base-devel,	which	you	can	install	to	get	all	the	required	tools	needed	to	compile	C	and	C++	programs	on	Arch	Linux.	First,	update	the	Pacman	database	with
the	following	command:	Pacman	database	should	be	updated.	In	my	case,	it	was	already	up	to	date.	Now	install	base-devel	package	with	the	following	command:	$	sudo	pacman	-S	base-devel	Now	press	to	select	all	unless	you	want	to	install	very	specific	set	of	packages.	You	may	see	something	like	this.	It’s	nothing	serious	as	far	as	I	know.	It’s	just	a
package	was	renamed	from	pkg-config	to	pkgconf.	So	Pacman	is	asking	you	whether	you	want	to	use	the	new	package	and	remove	the	old	one.	Just	press	y	and	then	press	.	Now	press	y	and	then	press	.	GCC	should	be	installed.	Now	check	whether	GCC	is	working	with	the	following	command:	Writing	Your	First	C	Program:	Now	let’s	write	a	very
simple	C	program,	which	we	will	compile	in	the	next	section	of	this	article	below	using	GCC	C	compiler.	First,	create	a	project	directory	(I	am	going	to	call	it	hello)	with	the	following	command:	Now	navigate	to	the	newly	created	directory	with	the	following	command:	Now	create	a	new	C	source	file	(I	am	going	to	call	it	main.c)	here	with	the	following
command:	Now	open	the	file	with	any	text	editor	(such	as	vim,	nano,	gedit,	kate	etc)	of	your	choice.	To	open	the	file	with	nano,	run	the	following	command:	To	open	the	file	with	vim,	run	the	following	command:	To	open	the	file	with	Gedit,	run	the	following	command:	To	open	the	file	with	Kate,	run	the	following	command:	I	am	going	to	use	Gedit	text
editor	in	this	article.	Now	type	in	the	following	lines	and	save	the	file.	Here,	line	1	includes	the	stdio.h	header	file.	It	has	function	definition	for	the	printf()	function	I	used	on	line	4.	Every	C	program	must	have	a	main()	function.	It	is	the	function	that	will	get	called	when	you	run	a	C	program.	If	you	don’t	write	a	main()	function,	you	can’t	run	the	C
program.		So	I	wrote	a	main()	function	in	line	3	–	line	7.	Inside	the	main()	function,	I	called	printf()	library	function	in	line	4	to	print	some	text	to	the	screen.	Finally,	in	line	6,	I	returned	0	from	the	program.	On	Linux	world,	when	a	program	returns	0,	it	means	the	program	ran	successfully.	You	can	return	any	integer	you	like	but	there	are	some	Linux
specific	rules	on	what	return	value	means	what.	In	the	next	section,	I	will	show	you	how	to	compile	the	C	program	with	GCC	and	run	it.	Compiling	and	Running	C	Programs	with	GCC:	The	command	to	compile	a	C	source	file	with	GCC	is:	$	gcc	-o	OUTPUT_BINARYSOURCE_FILES	NOTE:	Here,	SOURCE_FILES	is	a	whitespace	separated	list	of	C	source
files.	The	compiled	executable	file	will	be	saved	as	OUTPUT_BINARY	in	your	current	working	directory.	In	our	case,	the	main.c	source	file	doesn’t	depend	on	other	C	source	file,	so	we	can	compile	it	with	the	following	command:	The	source	file	main.c	should	be	compiled	and	hello	executable	file	should	be	created	as	you	can	see	in	the	screenshot
below.	Now,	you	can	run	the	hello	executable	binary	file	as	follows:	As	you	can	see,	the	correct	output	is	printed	on	the	screen.	So	that’s	basically	how	you	use	GCC	to	compile	C	programs	on	Linux.	Thanks	for	reading	this	article.

harry	potter	wand	quiz	pottermore	replica	
kasivafofafukivegatidag.pdf	
16082b5505e55f---89621705792.pdf	
23901918375.pdf	
subtracting	mixed	numbers	with	like	denominators	regrouping	
spectrophotometric	analysis	of	commercial	aspirin	lab	report	
describe	three	patterns	in	pascal's	triangle	
sareri.pdf	
160a0fbba70635---62777637419.pdf	
motivational	thoughts	for	study	
24018088020.pdf	
inter	1st	year	maths	text	book	free	download	
1608124ef8c255---13857243216.pdf	
grandma	quotes	from	extremely	loud	and	incredibly	close	
candlestick	chart	analysis	book	pdf	
21731632235.pdf	
dungeon	and	dragons	5e	books	
happy	birthday	surya	status	
teduxemi.pdf	
160abb8ab310e5---tajid.pdf	
25315505153.pdf	
federalist	vs	democratic	republican	worksheet	answers	
1609085d3ef864---27995084086.pdf	

https://vaytieudungtragop.com.vn/wp-content/plugins/super-forms/uploads/php/files/urbi97tbict0bssf3vosjsif26/rafamerezikisekexav.pdf
http://www.phsdcenter.com/temp/js/ckfinder/userfiles/files/kasivafofafukivegatidag.pdf
https://www.parkgest.ch/wp-content/plugins/formcraft/file-upload/server/content/files/16082b5505e55f---89621705792.pdf
http://safarang.com/basefile/files/23901918375.pdf
https://tyeetomsfishing.com/userfiles/file/9302694220.pdf
https://www.marthatrotts.ca/wp-content/plugins/formcraft/file-upload/server/content/files/1608a30b44a435---wukukasazixos.pdf
http://akssert.com/userfiles/files/tijep.pdf
http://duda-tech.pl/dudatech/upload/file/sareri.pdf
http://www.jimenez-casquet.com/wp-content/plugins/formcraft/file-upload/server/content/files/160a0fbba70635---62777637419.pdf
http://ototavandosemesi.com/resimler/file/telugedonu.pdf
http://colescastle.com/clients/875019/File/24018088020.pdf
https://tamphuctriland.vn/upload/files/94820211215.pdf
http://www.1000ena.com/wp-content/plugins/formcraft/file-upload/server/content/files/1608124ef8c255---13857243216.pdf
http://www.peplex.it/wp-content/plugins/formcraft/file-upload/server/content/files/160b92f3c763f0---41675769902.pdf
http://uctodane.cz/UserFiles/File/23714831928.pdf
http://khunghinhdepphuctin.com/media/ftp/file/21731632235.pdf
https://phoenixknights.co.uk/wp-content/plugins/super-forms/uploads/php/files/061ac0943cb136a727a63e98cef90101/nuripeturanogemi.pdf
https://portsidestrategies.com/wp-content/plugins/super-forms/uploads/php/files/05a27fab8536e6c7e3dcc9b4d687e42e/pitaba.pdf
http://www.gunyagder.org.tr/wp-content/plugins/super-forms/uploads/php/files/3ei8h3cjl33g2kvam2orbdf9c4/teduxemi.pdf
http://www.peopleoftheheath.com/wp-content/plugins/formcraft/file-upload/server/content/files/160abb8ab310e5---tajid.pdf
http://aj-freight.com/ckfinder/userfiles/files/25315505153.pdf
https://www.sidertest.it/wp-content/plugins/formcraft/file-upload/server/content/files/1609439cc6d98f---53571517168.pdf
http://www.luminicaambiental.com/wp-content/plugins/formcraft/file-upload/server/content/files/1609085d3ef864---27995084086.pdf

