
Kotlin	mvvm	retrofit	login	example

	

http://urseghy.com/c3?utm_term=kotlin+mvvm+retrofit+login+example






Comrams	are	an	interesting	new	language	of	Kotlin	that	allows	us	to	write	a	more	idiomatic	asynchronous	code.	-	It	also	means	that	you	can	write	an	asyncholy	code	in	the	same	way	that	you	usually	write	synchronous	code	in	your	project.	I	explained	Mvvm	in	detail	in	another	article.	Please	check	this	for	a	better	understanding	of	MVVM.	In	this
article,	I	will	focus	on	Conquram	and	joint	work.	The	basic	safety	block	of	the	main	flow	ensures	that	any	suspension	function	can	be	caused	by	the	main	flow.	According	to	Kotlin's	documentation,	Conquram	are	considered	a	light	alternative	to	flows.	Before	starting	-	with	a	cheaper	and	more	controlled	process	-	I	would	like	to	speak	briefly	about	the
concepts	and	functions	usually	used	in	the	choutine.	Grugrams	are	based	on	normal	features,	adding	two	new	operations.	Adds	Conquram,	suspension	and	summary.	Where	a	"pause	with	suspension"	is	the	usual	Kotlin	function	with	a	further	suspension	modifier	that	indicates	that	the	function	can	suspend	the	implementation.	Conramgram.
Remember	the	functions	when	we	get	an	answer	from	our	asynchronous	task.	He	works	together	to	change	reminders	and	continue.	To	understand	the	functions	of	the	suspension,	we	must	also	know	the	distributors	provided	by	Kotlin.	To	indicate	where	the	Conquuuram	must	be	performed,	Kotlin	provides	three	distributors	that	can	be	used:
disparars.amail.	Use	this	distributor	to	perform	a	consequence	of	the	main	Android	flow.	This	should	be	used	only	to	interact	with	the	user	interface	and	quick	work.	The	examples	include	the	call	of	suspension	functions,	the	execution	of	the	operations	of	the	Android	user	interface	platform	and	the	Liversa	update.dyspatchers.io.	The	examples	include
the	use	of	a	component	of	the	room,	reading	or	writing	files	and	the	start	of	any	networkCorutins	are	a	great	new	Kotlin	feature	that	allows	us	to	write	an	asynchronous	code	in	a	lot	of	idiotic	way.	-	It	also	means	that	you	can	write	an	asynchronous	code	just	as	you	usually	write	the	synchronous	code	in	your	project.	I	have	already	explained	in	detail
MVVM	in	another	entry.	Check	it	out	to	better	understand	MVVM.	In	this	record,	I	will	focus	on	how	the	corrutations	and	modifications	work	together.	MVVM	with	the	refinement	and	processing	of	viewing	in	cutlin	[example]	Corutin	with	modifications	on	the	main	thread	of	the	Viewmodel	block	in	the	main	security	ensures	that	any	suspension
function	can	be	called	from	the	main	thread.	According	to	Kotlin's	documentation,	the	corrutor	is	a	mild	alternative	to	threads.	Corutins	are	a	way	to	avoid	locking	and	switching	the	threads	and	making	it	cheaper	and	easier	to	manage	...	Before	we	start,	I	want	to	briefly	explain	the	concept	of	the	program	and	the	most	common	functions.	Corutines
are	based	on	the	usual	features,	adding	two	new	activities.	In	addition	to	the	call	(or	calling	back)	and	returning	the	corrutation	to	the	suspension	and	resume.SUSPEND	-	stops	the	current	corrutation	execution,	retains	all	local	variables	only	ordinary	Kotlin	function	with	an	additional	suspension	modifier	to	indicate	that	the	function	cancel	can	stop
execution.	.	Corutines	when	we	get	an	answer	from	our	asynchronous	task.	Stop	and	resume	work	together	to	replace	the	callbacks.	To	understand	the	stop	functions,	we	also	need	to	know	about	the	dispatchers	provided	by	Kotlin.	To	determine	where	the	applications	need	to	work,	Kotlin	provides	three	dispatchers	you	can	use:	Disatcher.Main	-	Use
this	dispatcher	to	run	the	application	in	the	main	Android	thread.	It	should	only	be	used	to	interact	with	the	user	interface	and	work	quickly.	Examples:	Calling	Stop	Functions,	Exercising	Android	UI	System,	and	Updating	Ledgate	Objects.	Dispatchers.io	-	This	dispatcher	is	optimized	for	the	disk	or	network	I/O	of	the	main	thread.	Examples	include
using	the	component	of	the	room,	reading	or	writing	files	and	launching	any	networkThis	expeditionary	program	is	optimized	in	the	work	intensively	loading	the	processor	for	the	main	fiber.	Examples	of	usage	are	the	list	and	parse	json.lets,	see	it	in	the	example	->	our	API	is	called	"Koruuties".	So	we	use	Dispatchers.io.	When	we	call	the	suspension
metalmov()	method,	it	pauses	in	our	program.	The	collaboration	between	the	main	thread	will	continue	with	the	result	once	the	block	with	the	context	is	complete.	Note:	Using	the	suspension	function	does	not	mean	that	the	valley	does	not	activate	the	function	in	the	background	thread.	It	is	normal	for	the	suspension	function	to	work	in	the	main
thread.	Laufen,	Asnclaunch	and	Async	are	the	most	commonly	used	crown	makers.	Which	program	will	be	aborted	if	the	task	is	canceled.	Async	creates	a	new	overall	program	and	returns	its	future	result	as	a	delayed	implementation.	Starting	the	CO	program	is	aborted	when	the	resulting	object	is	canceled.	See.	This	code	snippet	as	an	example.	An
example	is	the	difference	between	initial	and	asynchronizing	asynchronization	that	ASNC	can	return	the	future	result	where	the	delayed	type	can	call	the	function()	the	deferred	variable	to	get	the	CORS	result	and	the	flats	have	that	result	returned.	Everyone	is	the	creator	of	a	program	(e.g.	start,	assimilation,	etc.)	is	an	extension	of	the
corouutuescope.	When	the	binoculars	depart,	the	Korats	will	also	disappear	from	view.	Fortunately,	Android	Lifecycle-ViewModel-KKTX	is	an	easy	way	to	get	a	Corouutin	scope	ViewModel.	I'll	show	you	how	to	do	it	later.	Start	the	kroden	in	your	android	project	and	add	this	library	to	build.	The	Addiction	of	Gradle:	NOTE:	You	must	also	be	using
Valley	1.3	or	a	newer	version.	Working	with	Retroft?	Retrofitting	is	a	safe	type	of	Android	and	Java	HTTP	clients.	Starting	with	the	Retroft	2.6.0	you	no	longer	need	a	link	adapter	as	the	retrofit	now	develops	a	modifier	suspension	in	the	features.	You	want	to	get	started,	leave	...	add	link	between	modernization	to	our	assembly	file.	In	this	example	I
use	API	to	get	list	of	movies.	Please	note	this	fragment	of	our	interface:	you	can	notice	that	instead	of	now	we	get	a	function	with	a	suspended	modifierYour	interface	has	a	function.	When	this	function	is	in	the	documentation,	this	function	will	behave	as	a	normal	call	behind	the	scenes.	Information	such	as	the	response	code.	There	is	no	hope	()
because	it	is	automatically	processed!	Like	all	Android	networks,	this	is	done	in	the	background.	And	this	is	a	very	clean	way	to	do	it!	The	creation	of	the	modernization	of	RemDrofit	Serviceash	will	seem	the	next	fragment	of	code:	ViewModel	with	Corinescops	Co	-ures	Monitor	all	the	Kouutes	created.	Therefore,	if	the	area	is	canceled,	you	will	raise
all	the	conquram	it	creates.	This	is	particularly	important	if	ViewModel	Lancia	Choroutine.	If	your	viewmodel	is	destroyed,	any	asynchronous	job	you	can	do.	Otherwise,	you	will	spend	resources	and	potential	memory	losses.	If	you	think	that	after	the	viewmodel	has	been	destroyed,	you	should	maintain	asynchronous	work,	it	should	be	done	at	the
lowest	level	of	your	architectural	application.	Add	Choiroutinescope	to	your	viewmodel,	creating	a	new	area	with	the	superjorjob	activity	that	you	have	deleted,	ONCLEARED	().	The	gruggles	created	with	this	area	will	be	used	as	long	as	ViewModel	is	used.	Coroutines	and	Livetalvetata	are	a	user	interface	supervisor	and	we	predict	that	we	access	the
value	from	the	main	flow.	By	releasing	Lieata-17.1.0-Alpha1	Google,	he	guaranteed	the	compatibility	between	the	collapse	and	chorourines.	Exceptions	of	processing	from	Kotlin	Chorouzesif.	But	when	we	work	with	the	corutins,	we	can	elaborate	an	exception	using	the	global	exceptions	of	choroutine	called	choroutineexception.	To	use	it,	first
viewmodel	we	create	an	exceptional	processor	and	then	add	the	View	Modelscope	processor.	KTNEXT	action	composed	of	a	repository.mainrepostory.ktsetup	viewmodel	configuration,	MyViewModeFactory.ktmainview.kt,	finally,	in	our	main	display	model	and	call	it	Getallmovies	()This	example	is	on	github.	This	is	a	very	simple	magazine	example
using	MVVM	and	operational	data	and	data	in	Android.	It	receives	UI	input	via	Data	@=â,	saves	it	to	linedata	and	displays	it	in	the	UI.	This	example	is	for	those	who	want	to	know	the	easiest	way	to	get	UI	data.	This	is	useful	in	many	ways,	such	as	saving	time	for	development,	code	refactoring,	verification,	etc.	It's	no	surprise	that	this	is	used
throughout	the	Android	community.	So,	let's	start	using	these	technologies	together	in	one	application:	what	is	MVVM?	What	is	a	database?	What	is	Live	Data?	Step-by-step	implementation	conclusion	What	is	MVVM?	Answer:	MVVM	is	a	design	pattern	for	organizing	applications	with	a	GUI,	which	has	become	popular	on	Android.	This	concept	will
introduce	you	to	the	three	main	components	of	MVVM:	View,	Model,	and	ViewModel.	The	Presentation	Pattern	(MVVM)	is	an	architectural	pattern	used	in	software	development	created	by	Microsoft,	which	specializes	in	design	pattern	design	patterns.	It	is	based	on	MVC	(the	model	of	the	communication	model)	and	focuses	on	modern	UI
development	platforms	(WPF	and	Silverlight),	where	the	UX	developer	has	other	requirements	than	“more	traditional”	developers.	".	MVVM	is	a	way	to	build	client	applications	that	use	core	WPF	functions,	can	easily	test	application	functionality,	and	help	developers	and	designers	work	with	less	technical	difficulty.	Overview:	Performance	is
determined	in	XAML	and	should	have	no	background	logic.	Model	view	lines	only	through	the	data	transmission	channel.	Model:	The	model	is	responsible	for	providing	data	so	that	WPF	can	easily	use	it.	If	necessary,	it	is	necessary	to	implement	InotifyPropertyChanged	and/or	inotifyCollectionChanged.	ViewModel:	ViewModel	is	a	model	of	the
application	inside	the	application	or,	could	say	the	abstraction	of	the	presentation.	Provides	presentation-related	data	and	reveals	the	behavior	of	ideas,	usually	using	commands.	Model:	Definition,	role	and	responsibility.	What	should	be	in	the	model	layer	and	what	not.	Benefits	of	model	isolation	and	its	impact	on	testing.	Presentation:	definition,	role
and	responsibility.	How	it	works	with	ViewModel.	ViewModel:	Definition,	role	and	responsibility.	Because	it	deals	with	display,	providing	actions	and	observed	state.	Interaction	with	the	model.	Isolation	in	the	future.	What	is	a	database?	Answer:	data	binding	libraryAn	assistance	library	with	which	you	can	connect	the	components	of	the	user	interface
in	your	provisions	to	the	origins	specified	in	your	application	with	a	declaration	format	instead	of	at	the	code	level	and	much	more.	What	is	experienced?	Answer:	Livedata	is	a	great	observable	database.	In	contrast	to	a	normal	observable,	it	is	aware	of	the	life	cycle,	which	means	that	it	respects	the	life	cycle	of	other	components	of	application	such	as
activities,	fragments	or	services.	This	awareness	guarantees	that	the	updates	only	experienced	the	observers	of	the	components	of	the	application,	which	are	in	the	state	of	the	active	life	cycle.	The	use	of	LivedATA	offers	the	following	advantages:	guarantees	that	the	user	interface	corresponds	to	the	data	status:	experienced	the	observer	model.
Livedata	informs	the	objects	of	the	observer	when	the	condition	of	the	life	cycle	changes.	In	these	objects	of	observers,	it	is	possible	to	consolidate	the	code	and	update	the	user	interface.	Instead	of	updating	the	user	interface	every	time	the	application	data	changes,	your	observer	can	update	the	user	interface	every	time	a	change	is	made.	No
memory	loss:	observers	are	connected	to	life	cycle	objects	and	their	associated	life	cycle	is	cleaned	during	destruction.	No	abnormal	arrest	due	to	the	interrupted	activity:	if	the	observer's	life	cycle	is	inactive,	for	example	for	activities	at	the	bottom	of	the	stack,	he	does	not	get	a	live	event.	No	more	manual	life	cycle	management:	The	components	of
the	user	interface	only	observe	the	relevant	data	and	interrupt	or	do	not	use	observations.	LivedATA	automatically	manages	all	of	this	because	it	is	aware	of	the	changes	in	the	state	of	the	relevant	life	cycle	during	observation.	Updated	data:	If	the	life	cycle	becomes	inactive,	it	receives	the	latest	data	after	it	is	active	again.	For	example,	an	activity
that	was	located	in	the	background	receives	the	latest	data	immediately	after	returning.	Proper	configuration	changes:	If	an	activity	or	fragment	is	revised	due	to	a	change	in	the	configuration,	for	example,	the	rotation	of	the	device	immediately	receives	the	latest	available	data.	Resource	release:	You	can	expand	the	animated	object	with	the	Singleton
models	to	wrap	the	system	services	so	that	they	can	be	used	in	your	application.	The	lived	object	is	connected	to	the	system	service,	so	that	every	observer	who	needs	the	resource	can	simply	look	at	the	object	lived.	You	can	find	more	information	in	the	live	expansion.	Passo-Passo	1	Implementation:	Add	the	Grace	file	an	association	of	data	and
implementations:	Android	{...	Data	connection	{Activated	True}}	Def	Life_Versions	=	"1.1.1"	//	Implement	the	components	for	the	life	cycle	$	LIFE_VERSIONS	"AnotationonprocessorImprove	the	Android.UTİL.PATTERNS;	Common	Class	Loginuser	{Private	String	Stremailaddress;	Private	Zeičenfolge	Strpassword;	Public	Loginuser	(String	E-
Pastiaaddress,	String	Password)	{Stremailladdress	=	E-Pastiaaddress;	Strpassword	=	Password;	}	Public	String	GetStremailaddress	()	{return	Stremailaddress;	}	public	string	getstrpassword	()	{return	Strpassword;	}	General	Boolen	isemailvalid	()	{turn	scheme.email_address.matcher	(getstremailaddress	()).	Matches	();	}	Public	Boolean	Returns	()
{Getstrassword	().	length	()>	5;	}}	Import	the	Android.arch.lifecycle.mutablelivedata;	Improve	the	Android.arch.lifecycle.ViewModel;	Improve	Android.View.View;	Common	Class	Loginviewmodel	Erweiter	viewmodel	{public	mugablelivedata	e-pastiaddress	=	new	validate	();	Public	Mutableliivedata	Password	=	new	validate	();	SPECIAL
CONTRACTEDATA	Public	Mutablelivedata	getuser	()	{if	(usermutableliivedata	==	null)	{usermutablelivedata	=	new	validate	();	}	UsermutableliData	zurückgeben;	}	Public	Void	OnClick	(View)	{Loginuser	Loginuser	=	New	Loginuser	(email	-	email	usermutablivedata.setvalue	(Loginuser);	Inwardly	the	insertion	of	android.os.bundle	Importieren;
android.support.annotation.nullable;	loginviewmodel.Class)	Observer	()	{@override	Public	void	onchanged	(@nulllable	Loginuser	Loginuser)	{if	(textutils.isempty	(object.requirenonnull	(Loginuser)	.getstresiladdress	()).	ein	");	Binding.txtemailaddress.requestfocus	();{	Binding.txtPassword.setherror("PASSWORD");	Lising.txtPassword.requestfocus();
}	else	if	(!	loginUser.ispasswordlengthgreaterthan5())	{binding.txtassword.seterror("Geben	si	Mindestens	6	PasswortNummern	ein");	Lising.txtPassword.requestfocus();	}	son	{binding.lblemailanswer.settext(loginuser.getstrailaddress());	Lising.lblasswordanswer.settext(loginuser.getStrapsword());	}}});	}}	Zum	Schluss:	Die	xml-Datei:	(Wichtige



änderungen	hier)	LoginviewModel.onclick	(V)}"	Android:	TextSize	=	"18SP"	Application:	Layout_Constainnd_tondof	=	"Parent"	Application:	Layout_ContainTart_Tostartof	=	"superior"	application:	layout_Constaintop_Tobottomof	=	"@+ID/TXTPASSWORD"/>


