
	

https://rarovavovov.tugoduzak.com/432314298834086653936714120037164058096647?xezukusubufafezadabukaxifazebaziwatilidififinegabarujipezogubebev=muduzafivudidilemafatarerimipemabipagodojakekeseberokopitikafuvazozawefuwogotijedofajujedemubozopujudedavitabigodozepuzalutukepidiwegeloviridozalumusevoxomuxuvuzibifapirumabuzalevamemexomepileduzovifatatipo&utm_kwd=how+to+configure+test+plan+in+azure+devops&posulopepivapiluzezobigepijukorozakajatevekabovawenosufoxamupimakumivominidoj=gemomigokolomitomomujuzuwerenokomexabaxemagufojedesuwesosibolunikerugoronijabepapovikidododofuzatezoredobidologasuvufinosawekiviwobibibuxojon

A	Test	Plan	Template	is	an	essential	tool	in	software	testing	that	outlines	the	strategy,	scope,	and	objectives	of	the	testing	process.	It	provides	a	structured	approach	to	ensure	that	all	aspects	of	the	application	are	thoroughly	evaluated.	By	using	a	well-defined	test	plan	template,	you	can	streamline	the	testing	process,	improve	coverage,	and	enhance	the
quality	of	your	software.	This	guide	will	help	you	understand	how	to	create	an	effective	test	plan	that	meets	your	project's	needs	and	ensures	reliable	results.What	is	a	Test	Plan	template?A	Test	Plan	is	a	descriptive	document	that	describes	the	test	approach,	purpose,	plan,	estimation,	results,	and	resources	required	for	testing.	It	assists	us	in	regulating
the	effort	required	to	verify	the	quality	of	the	application	under	test.	The	Test	Plan	acts	as	a	layout	to	implement	Software	Testing	activities	as	a	defined	process	that	is	closely	observed	and	supervised	by	the	Test	Manager.Test	Plan	Template	FormatBelow	is	a	simple	and	easy-to-understand	test	plan	template	format	that	can	be	customized	according	to
the	project	requirements.Test	Plan	Template	FormatWho	Prepares	the	Test	Plan	Template?The	Test	Lead	or	Test	Manager	prepares	the	Test	Plan	template.	Testers	are	also	involved	in	the	procedure	of	writing	test	plan	templates.	After	the	test	plan	is	written,	the	testers	will	write	test	scenarios	and	test	cases	depending	on	the	test	plan	document.Steps	to
Create	an	Efficient	Test	PlanStep	1:	Define	the	Release	ScopeClearly	outline	the	features,	functionalities,	and	components	that	need	to	be	tested	in	this	release.Identify	any	features	that	are	out	of	scope	to	avoid	unnecessary	testing.Step	2:	Schedule	TimelinesSet	realistic	deadlines	for	each	phase	of	the	testing	process.Include	buffer	time	for	unexpected
delays	or	issues.Step	3:	Define	Test	ObjectivesSpecify	the	goals	of	the	testing	process,	such	as	verifying	functionality,	performance,	and	security.Align	these	objectives	with	the	overall	project	requirements.Step	4:	Determine	Test	DeliverablesBefore	Testing:	Create	and	review	the	test	plan,	test	cases,	and	test	environment	setup.During	Testing:	Execute
test	cases,	log	defects,	and	monitor	progress.After	Testing:	Provide	test	reports,	defect	logs,	and	sign-off	documents.Step	5:	Design	the	Test	StrategyChoose	the	appropriate	testing	methodologies,	such	as	manual	testing,	automation,	or	performance	testing.Outline	the	tools	and	techniques	to	be	used	for	each	type	of	testing.Step	6:	Plan	the	Test
Environment	and	Test	DataDefine	the	hardware,	software,	and	network	requirements	for	the	test	environment.Prepare	the	necessary	test	data,	including	both	valid	and	invalid	data	sets,	to	ensure	comprehensive	testing.One-Page	Test	Plan	TemplateFor	a	quick	overview,	a	one-page	test	plan	template	can	include:Project	Name:	[Software	Name]Test
Manager:	[Name]Test	Objectives:	[List	Key	Objectives]Scope:	[In	Scope/Out	of	Scope]Test	Strategy:	[Testing	Types,	Tools,	etc.]Schedule:	[Start	Date,	End	Date,	Milestones]Resources:	[Testers,	Developers,	Tools]Risks:	[Identify	Potential	Risks]Deliverables:	[Test	Cases,	Reports,	etc.]Example	of	Test	Plan	TemplateProject	OverviewThe	project	involves
developing	a	new	e-commerce	platform	for	a	retail	company.	The	platform	includes	features	such	as	user	registration,	product	browsing,	shopping	cart	management,	payment	processing,	and	order	management.	The	goal	is	to	ensure	that	the	platform	is	fully	functional,	secure,	and	user-friendly	before	its	public	launch.Test	Plan	DetailsProject	Name:	E-
Commerce	Platform	DevelopmentTest	Manager:	John	DoeTesting	TeamMary	Smith	(Lead	Tester)Raj	Patel	(Automation	Specialist)Jane	Liu	(Performance	Tester)Ahmed	Hassan	(Security	Tester)1.	Define	the	Release	ScopeIn-Scope	Features:User	Registration	and	Login:	Verify	that	users	can	register,	log	in,	and	manage	their	accounts	securely.Product
Browsing	and	Search:	Ensure	that	users	can	browse	products,	use	filters,	and	search	functionalities.Shopping	Cart	Management:	Test	adding,	updating,	and	removing	items	from	the	shopping	cart.Payment	Processing:	Validate	the	payment	gateway	integration,	including	credit	card	processing,	PayPal,	and	other	methods.Order	Management:	Confirm	that
users	can	place	orders,	track	them,	and	receive	notifications.Out-of-Scope	Features:Social	Media	Integration:	Will	be	included	in	a	future	release.Advanced	Analytics:	Only	basic	tracking	will	be	tested	in	this	release.2.	Schedule	TimelinesTesting	Phases:Test	Planning:	Aug	1,	2024	-	Aug	7,	2024Test	Case	Design:	Aug	8,	2024	-	Aug	14,	2024Test
Environment	Setup:	Aug	15,	2024	-	Aug	17,	2024Test	Execution:	Aug	18,	2024	-	Sept	5,	2024Defect	Resolution:	Sept	6,	2024	-	Sept	12,	2024Test	Closure:	Sept	13,	2024	-	Sept	14,	2024Milestones:Test	Plan	Sign-Off:	Aug	7,	2024Test	Case	Review:	Aug	14,	2024First	Test	Execution	Cycle	Complete:	Aug	25,	2024Final	Test	Report	Submission:	Sept	14,
20243.	Define	Test	ObjectivesPrimary	Objectives:Functional	Testing:	Verify	that	all	in-scope	features	work	as	expected	under	various	conditions.Performance	Testing:	Ensure	the	platform	can	handle	high	traffic	volumes,	especially	during	sales	and	promotions.Security	Testing:	Identify	and	fix	vulnerabilities	that	could	expose	user	data	or	allow
unauthorized	access.Usability	Testing:	Assess	the	platform's	ease	of	use	and	user	experience,	ensuring	that	customers	can	navigate	and	complete	purchases	effortlessly.Secondary	Objectives:Compatibility	Testing:	Test	the	platform	on	different	browsers	(Chrome,	Firefox,	Safari)	and	devices	(desktop,	mobile,	tablet).Regression	Testing:	Re-test	previously
tested	functionalities	to	ensure	that	new	changes	have	not	introduced	defects.4.	Determine	Test	DeliverablesBefore	Testing:Test	Plan	Document:	Detailed	test	plan,	including	scope,	objectives,	strategy,	and	resources.Test	Cases:	Specific	test	cases	for	each	feature,	outlining	the	steps	to	be	executed	and	the	expected	results.Test	Data:	Prepared	data	sets
for	testing	various	scenarios,	such	as	valid/invalid	user	inputs,	different	payment	methods,	etc.Test	Environment	Setup:	Configuration	of	servers,	databases,	and	other	necessary	components.During	Testing:Execution	Logs:	Records	of	all	test	cases	executed,	including	pass/fail	status.Defect	Reports:	Documentation	of	any	issues	found,	including	steps	to
reproduce,	screenshots,	and	severity.Daily/Weekly	Status	Reports:	Updates	on	testing	progress,	including	completed	tests,	open	defects,	and	risks.After	Testing:Final	Test	Report:	Summary	of	the	testing	activities,	including	overall	test	coverage,	defect	trends,	and	final	recommendations.Defect	Log:	Comprehensive	list	of	all	identified	defects,	including
their	status	(open,	fixed,	closed)	and	resolution.Test	Closure	Report:	Document	indicating	that	all	planned	tests	have	been	completed,	and	the	software	is	ready	for	release.5.	Design	the	Test	StrategyFunctional	Testing:Manual	Testing:	Testers	will	manually	execute	test	cases	for	critical	functionalities	like	user	registration,	payment	processing,	and	order
management.Automation	Testing:	Automation	scripts	will	be	created	using	Selenium	WebDriver	to	handle	repetitive	tasks	like	login/logout,	adding	items	to	the	cart,	and	performing	search	operations.Performance	Testing:Load	Testing:	Simulate	a	large	number	of	users	accessing	the	platform	simultaneously	to	assess	performance	under	normal	and	peak
conditions.Stress	Testing:	Test	the	platform's	behavior	under	extreme	conditions	to	identify	breaking	points	and	ensure	graceful	degradation.Security	Testing:Vulnerability	Scanning:	Use	automated	tools	to	scan	for	common	vulnerabilities	like	SQL	injection,	cross-site	scripting	(XSS),	and	insecure	configurations.Penetration	Testing:	Perform	manual	tests
to	identify	potential	security	threats	that	automated	tools	might	miss.Usability	Testing:User	Interviews	and	Surveys:	Collect	feedback	from	a	sample	of	users	to	understand	their	experience	with	the	platform.A/B	Testing:	Compare	different	versions	of	certain	features	(e.g.,	checkout	flow)	to	determine	which	performs	better	in	terms	of	user	satisfaction
and	conversion	rates.6.	Plan	the	Test	Environment	and	Test	DataTest	Environment	Setup:Servers:	Ensure	that	the	test	servers	mimic	the	production	environment,	including	load	balancers,	web	servers,	and	databases.Software:	Install	necessary	software,	such	as	the	web	server	(Apache),	database	management	system	(MySQL),	and	the	application
itself.Network	Configuration:	Set	up	the	network	to	replicate	typical	user	conditions,	including	firewalls,	VPNs,	and	internet	speeds.Test	Data	Preparation:Valid	Data:	Create	realistic	data	sets,	such	as	user	profiles,	product	listings,	and	payment	information,	that	reflect	typical	use	cases.Invalid	Data:	Generate	data	to	test	edge	cases	and	error	handling,
such	as	incorrect	user	inputs,	expired	credit	cards,	and	unavailable	products.Purpose	&	Importance	of	Test	Plan	TemplateThe	key	purpose	of	a	Test	Plan	is	to	build	documentation	that	defines	how	the	tester	will	prove	that	the	software	works	as	it	should.	A	test	plan	template	is	essential	because	it	acts	like	a	roadmap	for	testing,	guiding	what	tests	need
to	be	done,	how	to	do	them,	and	when.	Its	primary	purposes	are	to	ensure	organized	and	thorough	testing	by	outlining	the	testing	scope,	objectives,	and	resources.	It	also	serves	as	a	communication	tool	among	testers,	developers,	and	stakeholders,	helping	everyone	stay	aligned.	Additionally,	it	helps	monitor	progress,	adapt	to	changes,	and	manage	the
entire	testing	process	effectivelyThe	document	should	detail	what	is	required	to	be	tested,	how	it	will	be	tested,	and	who	is	in	charge	of	testing.It	acts	as	a	layout	to	implement	software	testing	activities	as	a	defined	process.By	putting	up	a	test	plan,	all	team	persons	can	work	together	and	communicate	their	parts	to	each	other.How	To	Prepare	an
Effective	Test	Plan?1.	Define	ObjectivesObjective	Setting:	Clearly	outline	the	goals	of	your	testing.	Determine	what	you	aim	to	achieve,	such	as:Finding	Bugs:	Identifying	and	documenting	defects	or	issues	within	the	application.Assessing	Performance:	Evaluating	how	well	the	application	performs	under	various	conditions.Verifying	Functionality:
Ensuring	that	the	application	works	as	intended	and	meets	specified	requirements.Why	It	Matters:	Clear	objectives	help	focus	the	testing	efforts	and	align	them	with	the	project's	goals,	ensuring	that	all	critical	aspects	are	covered.2.	Break	Down	the	ApplicationComponent	Analysis:	Divide	the	application	into	manageable	components	or	modules.	This
involves:Identifying	Key	Areas:	Determine	which	parts	of	the	application	are	critical	and	need	thorough	testing.Prioritizing	Components:	Focus	on	high-risk	areas	that	could	significantly	impact	the	application's	performance	or	functionality.Why	It	Matters:	Breaking	down	the	application	helps	in	organizing	the	testing	process	and	ensures	that	all	crucial
parts	are	thoroughly	tested.3.	Design	Test	ScenariosScenario	Creation:	Develop	test	scenarios	that	simulate	real-world	use	cases	and	edge	cases,	including:User	Interactions:	Create	scenarios	based	on	typical	user	behaviors	and	interactions	with	the	application.Edge	Cases:	Include	less	common	but	possible	scenarios	that	could	uncover	hidden
issues.Prioritization:	Rank	scenarios	based	on	their	importance	and	impact	on	the	application	to	optimize	testing	time	and	resources.Why	It	Matters:	Comprehensive	and	well-prioritized	test	scenarios	help	in	effectively	evaluating	the	application's	functionality	and	robustness.4.	Select	Testing	TechniquesMethodology	Choice:	Choose	the	appropriate
testing	techniques	and	methodologies	based	on	the	project’s	requirements.	This	may	include:Manual	Testing:	Performing	tests	manually	to	evaluate	functionality	and	user	experience.Automated	Testing:	Using	tools	and	scripts	to	perform	repetitive	and	complex	test	cases	efficiently.Performance	Testing:	Assessing	how	the	application	handles	load	and
stress.Why	It	Matters:	Selecting	the	right	techniques	ensures	that	the	testing	is	efficient	and	aligned	with	the	project's	specific	needs	and	constraints.5.	Create	a	Master	ScheduleScheduling:	Develop	a	detailed	schedule	that	includes:Testing	Phases:	Outline	all	phases	from	preparation	(e.g.,	setting	up	test	environments)	to	execution	(running	the	tests)
and	reporting	(documenting	results).Timelines:	Set	realistic	timelines	for	each	activity	to	manage	the	testing	process	effectively.Why	It	Matters:	A	well-structured	schedule	helps	in	managing	time	and	resources,	ensuring	that	testing	activities	are	completed	systematically	and	on	time.By	following	these	steps,	you	can	prepare	a	comprehensive	and
effective	test	plan	that	helps	ensure	thorough	testing	and	contributes	to	the	successful	delivery	of	a	high-quality	application.Test	Planning	in	a	Test	Management	ToolUsing	a	test	management	tool	can	streamline	the	test	planning	process	by	allowing	teams	to:Milestones:	Track	important	deadlines	and	progress.Collaboration:	Share	the	test	plan	with	all
stakeholders	and	receive	feedback	in	real-time.Reporting:	Automatically	generate	reports	on	testing	progress,	defects,	and	coverage.ConclusionA	well-structured	test	plan	is	essential	for	ensuring	that	all	aspects	of	a	software	application	are	thoroughly	tested	and	that	the	testing	process	is	efficient	and	effective.	By	following	the	steps	outlined	above,
teams	can	create	a	comprehensive	test	plan	that	covers	all	necessary	areas	and	aligns	with	the	project's	goals.	This	leads	to	higher	quality	software	and	a	smoother	release	process.	,	the	free	encyclopedia	that	anyone	can	edit.	109,638	active	editors	7,014,808	articles	in	English	HMS	Neptune	was	a	dreadnought	battleship	built	for	the	Royal	Navy	in	the
first	decade	of	the	20th	century,	the	sole	ship	of	her	class.	Laid	down	at	HM	Dockyard,	Portsmouth,	in	January	1909,	she	was	the	first	British	battleship	to	be	built	with	superfiring	guns.	Shortly	after	her	completion	in	1911,	she	carried	out	trials	of	an	experimental	fire-control	director	and	then	became	the	flagship	of	the	Home	Fleet.	Neptune	became	a
private	ship	in	early	1914	and	was	assigned	to	the	1st	Battle	Squadron.	The	ship	became	part	of	the	Grand	Fleet	when	it	was	formed	shortly	after	the	beginning	of	the	First	World	War	in	August	1914.	Aside	from	participating	in	the	Battle	of	Jutland	in	May	1916,	and	the	inconclusive	action	of	19	August	several	months	later,	her	service	during	the	war
generally	consisted	of	routine	patrols	and	training	in	the	North	Sea.	Neptune	was	deemed	obsolete	after	the	war	and	was	reduced	to	reserve	before	being	sold	for	scrap	in	1922	and	subsequently	broken	up.	(Full	article...)	Recently	featured:	Nominative	determinism	Donkey	Kong	Land	History	of	education	in	Wales	(1701–1870)	Archive	By	email	More
featured	articles	About	Wreckage	of	Thai	Airways	International	Flight	114	...	that	Thai	prime	minister	Thaksin	Shinawatra	was	minutes	away	from	boarding	an	aircraft	that	exploded	(wreckage	pictured)?	...	that	L.	Whitney	Watkins	was	given	the	Bull	Moose	Party's	nomination	in	a	1912	election	despite	his	own	opposition?	...	that	a	1915	film	about
Florence	Nightingale	was	criticised	for	not	mentioning	her	pet	parrot?	...	that	the	statue	Receiver	was	repainted	in	2013	to	match	the	likeness	of	NFL	player	Donald	Driver	after	his	retirement?	...	that	actress	Jennifer	Metcalfe	used	the	experience	of	her	father's	cancer	in	Episode	6465	of	the	British	soap	opera	Hollyoaks?	...	that	economist	Roger	A.
Freeman	questioned	the	value	of	college	and	favored	limiting	access	to	it	to	a	select	few?	...	that	the	children's	novel	Queenie	portrays	the	early	years	of	the	NHS	in	England?	...	that	painter	Nicolino	Calyo	left	Naples	after	participating	in	a	failed	uprising	against	King	Ferdinand	IV,	then	fled	Spain	following	the	outbreak	of	the	First	Carlist	War?	...	that
Class	War	was	held	responsible	for	the	poll	tax	riots?	Archive	Start	a	new	article	Nominate	an	article	Trifid	and	Lagoon	nebulae	The	Vera	C.	Rubin	Observatory	in	Chile	releases	the	first	light	images	(example	shown)	from	its	new	8.4-metre	(28	ft)	telescope.	In	basketball,	the	Oklahoma	City	Thunder	defeat	the	Indiana	Pacers	to	win	the	NBA	Finals.	An
attack	on	a	Greek	Orthodox	church	in	Damascus,	Syria,	kills	at	least	25	people.	The	United	States	conducts	military	strikes	on	three	nuclear	facilities	in	Iran.	In	rugby	union,	the	Crusaders	defeat	the	Chiefs	to	win	the	Super	Rugby	Pacific	final.	Ongoing:	Gaza	war	Iran–Israel	war	Russian	invasion	of	Ukraine	timeline	Sudanese	civil	war	timeline	Recent
deaths:	John	R.	Casani	Richard	Gerald	Jordan	Franco	Testa	Raymond	Laflamme	Gertrud	Leutenegger	Maria	Voce	Nominate	an	article	June	28:	Vidovdan	in	Serbia	Ned	Kelly	1880	–	Police	captured	Australian	bank	robber	and	cultural	icon	Ned	Kelly	(pictured)	after	a	gun	battle	in	Glenrowan,	Victoria.	1895	–	The	U.S.	Court	of	Private	Land	Claims	ruled
that	James	Reavis's	claim	to	18,600	sq	mi	(48,000	km2)	of	land	in	present-day	Arizona	and	New	Mexico	was	"wholly	fictitious	and	fraudulent".	1904	–	In	the	worst	maritime	disaster	involving	a	Danish	merchant	ship,	SS	Norge	ran	aground	on	Hasselwood	Rock	and	sank	in	the	North	Atlantic,	resulting	in	more	than	635	deaths.	1950	–	Korean	War:	South
Korean	forces	began	the	Bodo	League	massacre,	summarily	executing	tens	of	thousands	of	suspected	North	Korean	sympathizers.	1969	–	In	response	to	a	police	raid	at	the	Stonewall	Inn	in	New	York	City,	groups	of	gay	and	transgender	people	began	demonstrations,	a	watershed	event	for	the	worldwide	gay	rights	movement.	Charles	Cruft	(b.	1852)Olga
Sapphire	(b.	1907)Meralda	Warren	(b.	1959)Aparna	Rao	(d.	2005)	More	anniversaries:	June	27	June	28	June	29	Archive	By	email	List	of	days	of	the	year	About	Myosotis	scorpioides,	the	water	forget-me-not,	is	a	herbaceous	perennial	flowering	plant	in	the	borage	family,	Boraginaceae.	It	is	native	to	Europe	and	Asia,	but	is	widely	distributed	elsewhere,
including	much	of	North	America,	as	an	introduced	species	and	sometimes	a	noxious	weed.	It	is	an	erect	to	ascending	plant	of	up	to	70	cm,	bearing	small	(8–12	mm)	flowers	that	become	blue	when	fully	open	and	have	yellow	centers.	It	is	usually	found	in	damp	or	wet	habitats,	such	as	bogs,	ponds,	streams,	ditches,	fen,	and	rivers.	This	focus-stacked
photograph	shows	a	water	forget-me-not	growing	in	Niitvälja	bog,	Estonia.	Photograph	credit:	Ivar	Leidus	Recently	featured:	Whitehead's	trogon	Atacamite	Turban	Head	eagle	Archive	More	featured	pictures	Community	portal	–	The	central	hub	for	editors,	with	resources,	links,	tasks,	and	announcements.	Village	pump	–	Forum	for	discussions	about
Wikipedia	itself,	including	policies	and	technical	issues.	Site	news	–	Sources	of	news	about	Wikipedia	and	the	broader	Wikimedia	movement.	Teahouse	–	Ask	basic	questions	about	using	or	editing	Wikipedia.	Help	desk	–	Ask	questions	about	using	or	editing	Wikipedia.	Reference	desk	–	Ask	research	questions	about	encyclopedic	topics.	Content	portals	–	A
unique	way	to	navigate	the	encyclopedia.	Wikipedia	is	written	by	volunteer	editors	and	hosted	by	the	Wikimedia	Foundation,	a	non-profit	organization	that	also	hosts	a	range	of	other	volunteer	projects:	CommonsFree	media	repository	MediaWikiWiki	software	development	Meta-WikiWikimedia	project	coordination	WikibooksFree	textbooks	and	manuals
WikidataFree	knowledge	base	WikinewsFree-content	news	WikiquoteCollection	of	quotations	WikisourceFree-content	library	WikispeciesDirectory	of	species	WikiversityFree	learning	tools	WikivoyageFree	travel	guide	WiktionaryDictionary	and	thesaurus	This	Wikipedia	is	written	in	English.	Many	other	Wikipedias	are	available;	some	of	the	largest	are
listed	below.	1,000,000+	articles	 ةيبرعلا 	Deutsch	Español	 یسراف ​	Français	Italiano	Nederlands	日本語	Polski	Português	Русский	Svenska	Українська	Tiếng	Việt	中文	250,000+	articles	Bahasa	Indonesia	Bahasa	Melayu	Bân-lâm-gú	Български	Català	Čeština	Dansk	Eesti	Ελληνικά	Esperanto	Euskara	עברית	Հայերեն		Magyar	Norsk	bokmål	Română	Simple
English	Slovenčina	Srpski	Srpskohrvatski	Suomi	Türkçe	Oʻzbekcha	50,000+	articles	Asturianu	Azərbaycanca	฀฀฀฀฀	Bosanski	 یدروک 	Frysk	Gaeilge	Galego	Hrvatski	ქართული	Kurdî	Latviešu	Lietuvių	฀฀฀฀฀฀	Македонски	฀฀฀฀฀฀฀฀฀฀	Norsk	nynorsk	฀฀฀฀฀฀	Shqip	Slovenščina	฀฀฀	฀฀฀฀฀฀	 ودرا 	Retrieved	from	"	2Battleship	formation	of	the	Royal	Navy	For	the	German
counterpart	during	World	War	I,	see	I	Battle	Squadron.	1st	Battle	SquadronThe	1st	Battle	Squadron	at	sea,	April	1915Active1912–1945Country	United	KingdomBranch	Royal	NavyTypeSquadronSize8	x	BattleshipsPart	ofGrand	FleetMilitary	unit	The	1st	Battle	Squadron	was	a	naval	squadron	of	the	British	Royal	Navy	consisting	of	battleships.	The	1st
Battle	Squadron	was	initially	part	of	the	Royal	Navy's	Grand	Fleet.	After	World	War	I	the	Grand	Fleet	was	reverted	to	its	original	name,	the	Atlantic	Fleet.	The	squadron	changed	composition	often	as	ships	were	damaged,	retired	or	transferred.	As	an	element	in	the	Grand	Fleet,	the	Squadron	participated	in	the	Battle	of	Jutland.[1]	On	5	August	1914,	the
squadron	was	constituted	as	follows:[2]	HMS	Marlborough	HMS	Collingwood	HMS	Colossus	HMS	Hercules	HMS	Neptune	HMS	St.	Vincent	HMS	Superb	HMS	Vanguard	Revenge	and	Hercules	en	route	to	Jutland	with	the	sixth	division.	During	the	Battle	of	Jutland,	the	composition	of	the	1st	Battle	Squadron	was	as	follows:[1]	Sixth	Division	HMS
Marlborough	Flagship	of	Vice-Admiral	Sir	Cecil	Burney;	Captain	G.	P.	Ross;	HMS	Revenge	Captain	E.	B.	Kiddle;	HMS	Hercules	Captain	L.	Clinton-Baker;	HMS	Agincourt	Captain	H.	M.	Doughty;	Fifth	Division	HMS	Colossus	Flagship	of	Rear	Admiral	E.	F.	A.	Gaunt;	Captain	A.	D.	P.	R.	Pound;	HMS	Collingwood	Captain	J.	C.	Ley;	HMS	St.	Vincent	Captain
W.	W.	Fisher;	HMS	Neptune	Captain	V.	H.	G.	Bernard;	HMS	Revenge	Following	the	Battle	of	Jutland,	the	1st	Battle	Squadron	was	reorganized,	with	Colossus,	Hercules,	St.	Vincent,	Collingwood	and	Neptune	all	transferred	to	the	4th	Battle	Squadron.	In	January	1917,	the	squadron	was	constituted	as	follows:[3]	HMS	Marlborough	HMS	Agincourt	HMS
Benbow	–	joined	July,	1916	HMS	Canada	HMS	Emperor	of	India	–	joined	July,	1916	HMS	Revenge	HMS	Royal	Oak	–	joined	May,	1916	HMS	Royal	Sovereign	–	joined	June,	1916	By	1918,	Agincourt	had	been	transferred	to	the	2nd	Battle	Squadron,	and	Resolution,	Ramillies	and	Iron	Duke	had	joined	the	squadron	on	completion.[4]	For	many	years	the
squadron	served	in	the	Mediterranean	as	the	main	British	battle	force	there.	On	3	September	1939	the	1st	Battle	Squadron,	serving	in	the	Mediterranean	Fleet,	consisted	of	Barham,	Warspite	and	Malaya,	with	headquarters	at	Alexandria,	Egypt,	under	the	command	of	Vice-Admiral	Geoffrey	Layton.[5]	In	December	1943	the	Squadron	was	under	the
command	of	Vice	Admiral	Arthur	Power.	In	January	1944	the	Eastern	Fleet	was	reinforced	by	HMS	Queen	Elizabeth,	HMS	Renown,	HMS	Valiant,	HMS	Illustrious,	HMS	Unicorn	and	seven	destroyers.	The	Admiralty	sent	this	force	out	to	India	under	the	title	of	the	First	Battle	Squadron.[6]	From	November	1944,	the	squadron	served	in	the	British	Pacific
Fleet	under	the	command	of	Vice-Admiral	Henry	Rawlings,	who	also	served	as	Second-in-Command	of	the	Fleet.	It	consisted	of	HMS	King	George	V,	HMS	Howe,	HMS	Duke	of	York	and	HMS	Anson	at	various	times.	Commanders	were	as	follows:[7]	Vice-Admiral	Sir	Stanley	Colville	(1912–14)	Vice-Admiral	Sir	Lewis	Bayly	(June–December	1914)	Admiral
Sir	Cecil	Burney	(1914–16)	Vice-Admiral	Sir	Charles	Madden	(1916–19)	Vice-Admiral	Sir	Sydney	Fremantle	(1919–21)	Vice-Admiral	Sir	William	Nicholson	(1921–22)	Vice-Admiral	Sir	Edwyn	Alexander-Sinclair	(1922–24)	Rear-Admiral	William	Fisher	(1924–25)	Rear-Admiral	Cecil	Staveley	(1925–26)	Vice-Admiral	Sir	Michael	Hodges	(1926–27)	Vice-Admiral
Sir	John	Kelly	(1927–29)	Vice-Admiral	Howard	Kelly	(1929–30)	Vice-Admiral	Sir	William	Fisher	(1930–32)	Vice-Admiral	Sir	Roger	Backhouse	(1932–34)	Vice-Admiral	Sir	Charles	Forbes	(1934–36)	Vice-Admiral	Hugh	Binney	(1936–38)	Rear-Admiral	Ralph	Leatham	(1938–39)	Vice-Admiral	Geoffrey	Layton	(January–November	1939)	Rear-Admiral	Henry
Pridham-Wippell	(July–October	1940)	Vice-Admiral	John	Tovey	(October–December	1940)	Rear-Admiral	Bernard	Rawlings	(1940–41)	Vice-Admiral	Sir	Henry	Pridham-Wippell	(1941–42)	Vice-Admiral	Sir	Arthur	Power	(1943–44)	Vice-Admiral	Sir	Bernard	Rawlings	(1944–45)	Post	holders	included:[8]	Rear-Admiral	Charles	E.	Madden,	5	January	1912	–	10
November	1912	Rear-Admiral	The	Hon.	Somerset	A.	Gough-Calthorpe,	10	December	1912	–	10	December	1913	Rear-Admiral	Hugh	Evan-Thomas,	10	December	1913	–	25	August	1915	Rear-Admiral	Ernest	Gaunt,	25	August	1915	–	12	June	1916	Rear-Admiral	Alexander	L.	Duff,	12	June	1916	–	30	November	1916	Rear-Admiral	Sir	William	C.	M.	Nicholson,
1	December	1916	–	20	March	1919	Rear-Admiral	The	Hon.	Victor	A.	Stanley,	1	April	1919	–	1	April	1920	Rear-Admiral	Henry	M.	Doughty,	24	March	1920	–	14	April	1921	Rear-Admiral	Sir	Rudolf	W.	Bentinck,	3	May	1921	–	3	May	1922	Rear-Admiral	Arthur	A.	M.	Duff,	3	May	1922	Rear-Admiral	William	A.	H.	Kelly,	3	May	1923	Rear-Admiral	William	H.	D.
Boyle,	3	May	1924	–	3	May	1924	Rear-Admiral	William	W.	Fisher,	14	October	1924	–	7	September	1925	Rear-Admiral	Cecil	M.	Staveley,	15	October	1925	–	1	October	1926	Rear-Admiral	David	T.	Norris,	1	October	1926	Rear-Admiral	Bernard	St.	G.	Collard,	1	October	1927	Rear-Admiral	William	M.	Kerr,	20	March	1928	–	5	April	1929	Rear-Admiral	The
Hon.	Reginald	A.	R.	P.-E.-E.-Drax,	12	April	1929	–	26	April	1930	Rear-Admiral	Henry	D.	Pridham-Wippell,	8	May	1940	–	24	October,	1941	^	a	b	Macintyre,	Donald.	Jutland	Evans	Brothers	Ltd.	1957;	ISBN	0-330-20142-5	^	Dittmar,	F.J	&	Colledge	J.J.,	British	Warships	1914–1919	Ian	Allan,	London.	1972;	ISBN	0-7110-0380-7	^	Dittmar,	F.J	&	Colledge	J.J.,
British	Warships	1914–1919	Ian	Allan,	London.	1972;	ISBN	0-7110-0380-7	pp20	^	Dittmar,	F.J	&	Colledge	J.J.,	British	Warships	1914–1919	Ian	Allan,	London.	1972;	ISBN	0-7110-0380-7	pp24	^	Orbat.com/Niehorster,	Mediterranean	Fleet,	3	September	1939,	accessed	May	2008	^	Jackson,	Ashley	(2006).	The	British	Empire	and	the	Second	World	War.
Continuum	International	Publishing	Group.	p.	301.	ISBN	1-85285-417-0.	^	"Royal	Navy	Senior	Appointments"	(PDF).	Archived	from	the	original	(PDF)	on	11	July	2011.	Retrieved	4	October	2014.	^	Harley,	Simon;	Lovell,	Tony.	"First	Battle	Squadron	(Royal	Navy)	-	The	Dreadnought	Project".	www.dreadnoughtproject.org.	Harley	and	Lovell,	27	December
2016.	Retrieved	15	February	2018.	First	Battle	Squadron	at	DreadnoughtProject.org	Royal	Navy	History	Composition	of	the	Grand	Fleet	Retrieved	from	"	3	The	following	pages	link	to	1st	Battle	Squadron	External	tools	(link	count	transclusion	count	sorted	list)	·	See	help	page	for	transcluding	these	entries	Showing	50	items.	View	(previous	50	|	next	50)
(20	|	50	|	100	|	250	|	500)List	of	dreadnought	battleships	of	the	Royal	Navy	(links	|	edit)	Revenge-class	battleship	(links	|	edit)	HMS	King	Edward	VII	(links	|	edit)	HMS	Glorious	(links	|	edit)	HMS	Revenge	(06)	(links	|	edit)	HMS	Resolution	(09)	(links	|	edit)	HMS	Royal	Oak	(08)	(links	|	edit)	Renown-class	battlecruiser	(links	|	edit)	HMS	Renown	(1916)	(links
|	edit)	HMS	Repulse	(1916)	(links	|	edit)	HMS	Emperor	of	India	(links	|	edit)	British	Pacific	Fleet	(links	|	edit)	HMS	New	Zealand	(1911)	(links	|	edit)	Courageous-class	battlecruiser	(links	|	edit)	5th	Battle	Squadron	(links	|	edit)	HMS	Agincourt	(1913)	(links	|	edit)	HMS	Africa	(1905)	(links	|	edit)	Mediterranean	Fleet	(links	|	edit)	Hugh	Evan-Thomas	(links	|
edit)	Henry	Harwood	(links	|	edit)	HMS	Britannia	(1904)	(links	|	edit)	List	of	fleets	and	major	commands	of	the	Royal	Navy	(links	|	edit)	HMS	Hibernia	(1905)	(links	|	edit)	Reginald	Drax	(links	|	edit)	HMS	Southampton	(1912)	(links	|	edit)	Atlantic	Fleet	(United	Kingdom)	(links	|	edit)	HMS	Commonwealth	(links	|	edit)	Boadicea-class	cruiser	(links	|	edit)	Sir
Charles	Madden,	1st	Baronet	(links	|	edit)	HMS	Hindustan	(1903)	(links	|	edit)	Tondern	raid	(links	|	edit)	6th	Battle	Squadron	(links	|	edit)	British	1st	Battle	Squadron	(redirect	page)	(links	|	edit)	Henry	Pridham-Wippell	(links	|	edit)	HMS	Gloucester	(1909)	(links	|	edit)	HMS	Dominion	(links	|	edit)	HMS	Zealandia	(links	|	edit)	HMS	Bellona	(1909)	(links	|
edit)	Main	Page	(links	|	edit)	2nd	Battle	Squadron	(links	|	edit)	3rd	Battle	Squadron	(links	|	edit)	4th	Battle	Squadron	(links	|	edit)	Action	off	Cape	Passero	(links	|	edit)	701	Naval	Air	Squadron	(links	|	edit)	Henry	Bruce	(Royal	Navy	officer)	(links	|	edit)	9th	Battle	Squadron	(links	|	edit)	David	Norris	(Royal	Navy	officer)	(links	|	edit)	Ralph	Leatham	(links	|
edit)	Rudolph	Bentinck	(links	|	edit)	Bernard	Rawlings	(Royal	Navy	officer)	(links	|	edit)	View	(previous	50	|	next	50)	(20	|	50	|	100	|	250	|	500)	Retrieved	from	"	WhatLinksHere/1st_Battle_Squadron"	Are	you	a	Journalist,	Influencer,	or	a	Product	Owner?	Get	free	products	to	review	on	your	Social	Media/Blogs.	In	the	last	blog	post	we	looked	how	Azure
DevOps	Test	Plans	is	used	to	structure	testing	and	how	we	can	run	the	regression	testing.	In	this	post	we	are	going	to	look	how	Test	Plans	can	be	used	to	handle	different	test	environments	and	how	we	can	improve	our	test	cases	with	parameters.	Configurations	is	a	Test	Plan	feature	that	can	be	used	to	define	different	environments	that	we	should	run
our	tests	in.	For	example	we	can	define	configurations	for	operating	systems,	browsers	and	devices.	If	we	are	developing	IoT	devices	we	can	create	configuration	for	every	device	type	(or	generation)	we	are	currently	supporting	and	the	run	test	cases	against	all	those	configurations.	This	is	simple	way	to	duplicate	test	cases	for	different	devices.
Configurations	are	split	into	two	different	things:	Configuration	variables	and	Test	Configurations.	The	Configuration	variable	is	for	example	an	operating	system	or	a	browser.	It	is	variable	that	will	have	multiple	different	values	and	the	test	configuration	is	a	set	of	multiple	configuration	variables.	In	my	example	I’m	having	browser	configuration	variable
with	following	values:	Firefox,	Chrome	and	Edge.	I	also	have	operating	system	with	Windows	10,	Windows	11	and	Windows	8.	Now	I	will	combine	these	two	test	variables	to	create	a	test	configuration:	Operating	system	Windows	10	and	browser	Firefox,	operating	system	Windows	10	and	browser	Edge	etc.	I	don’t	have	to	create	configurations	for	all	the
combinations	of	variables,	just	the	ones	that	I’m	going	to	need.	Remember	to	push	Save	button	at	top	when	doing	changes	After	creating	the	configurations,	we	can	assign	them	into	test	suites	or	test	cases	by	right-clicking	on	top	of	test	suite/case.	Assigning	configurations	into	test	suite	When	the	configuration	is	assigned	into	test	suite,	the	Azure
DevOps	will	duplicate	all	the	test	cases	for	selected	configurations.	In	this	example	I	have	three	different	configurations	set	for	test	suite,	so	all	the	tests	are	tripled	into	test	run	(one	time	for	each	configuration).	Test	cases	are	multiplied	by	selected	number	of	configurations	into	test	run	We	can	also	filter	our	test	progress	report	with	configurations	to
monitor	how	tests	are	succeeding	in	different	configuration	sets	Progress	report	also	supports	configurations	Parameters	is	a	way	to	share	information	between	test	cases.	For	example	if	we	have	username	and	password	that	we	are	using	in	multiple	different	use	cases	(registration,	logins	etc.).	We	don’t	want	to	write	down	those	into	every	single	test
case,	because	if	we	need	to	change	them,	it	is	hard	to	go	through	all	the	test	cases.	We	can	use	the	parameters	to	store	the	username	and	password	combinations	and	then	use	them	in	test	cases.	Username,	password	and	groupname	as	parameter	Here	I	have	created	parameter	set	called	Usernames	that	contains	usernames,	passwords	and	groupnames.
I	have	two	different	users	in	this	parameter	set.	Now	when	I’m	writing	the	test	case	I	can	use	the	parameters	with	@Username,	@Password	and	@Groupname	notation.	The	Azure	DevOps	will	recognize	the	syntax	and	link	the	parameter	set	into	test	case.	We	can	see	that	there	is	“Pameter	values”	at	the	bottom	that	means	we	have	successfully	linked	test
case	into	parameter	set.	Now	when	we	go	to	execute	this	test	the	Azure	DevOps	will	add	iteration	for	each	parameters.	We	had	two	rows	in	our	example,	so	we	will	get	two	different	iterations	per	linked	test	case.	Parameters	will	create	an	iteration	into	test	run	Note	that	you	can	link	only	one	parameter	set	per	test	case.	If	you	need	two,	you	have	to
combine	the	parameter	sets	into	one	and	just	use	the	parameters	that	you	need	from	the	set.	Configurations	can	be	used	to	create	different	kind	of	test	environments.	It	can	be	used	to	track	testing	against	different	devices	or	different	browsers.	We	can	easily	filter	test	results	based	on	their	run	configurations	so	we	can	get	good	overview	of	test	progress
per	configuration.	Parameters	are	simple	way	to	share	information	between	multiple	test	cases.	Parameter	row	will	generate	iteration	per	test	case	into	test	run	where	the	configuration	will	duplicate	the	test	case	itself	per	assigned	configurations.	We	might	have	seen	earlier	about	how	what	is	meant	TestPlans,	TestSuites	&	TestCases.	Let	us	see	how
how	to	create	TestPlans	in	Azure	DevOps.	A	Project	can	have	one	or	more	TestPlans	but	generally	if	it’s	more	than	10	or	20	it’s	difficult	to	maintain	so	any	project	team	should	have	minimum	TestPlans	and	create	more	folders	for	different	Releases	under	TestPlan.	You	can	have	different	TestPlans	for	different	teams	within	a	project	and	it	all	depends
upon	which	areapath	you	are	creating	a	TestPlan.	let	us	see	what	are	the	steps	to	create	a	TestPlan	Step	1:	Click	on	“Test	Plans”	on	the	left	menu	&	then	Click	on	“New	Test	Plan”	Step	2:	Enter	the	name	of	the	TestPlan	you	like	to	create	,	then	choose	the	AreaPath,	Iteration	for	the	TestPlan	&	then	click	on	“Create”	button	Step	3:	After	the	“Create”
button	is	clicked,	then	the	“TestPlan”	will	be	created	as	shown.	Each	and	every	TestPlan	will	have	a	default	“Test	Suite”	with	the	name	of	the	“TestPlan”	itself.	Like	this	you	can	create	multiple	TestPlans	as	shown	If	you're	looking	to	streamline	your	software	development	process	and	ensure	better	quality	for	your	applications,	integrating	test	plans	into
Azure	DevOps	can	be	a	game-changer.	It	allows	you	to	manage,	track,	and	execute	tests	efficiently,	helping	you	identify	and	fix	bugs	early	in	the	development	cycle.	In	this	guide,	we'll	show	you	how	to	enable	test	plans	in	Azure	DevOps	and	get	the	most	out	of	this	powerful	feature.	What	are	Test	Plans	in	Azure	DevOps?	Test	plans	in	Azure	DevOps	are	a
set	of	tools	and	functionalities	that	allow	you	to	create,	manage,	and	track	tests	for	your	software	projects.	By	defining	test	suites,	test	cases,	and	test	configurations,	you	can	organize	your	testing	efforts	and	ensure	comprehensive	coverage	for	your	applications.	Test	plans	help	you	validate	the	functionality,	performance,	and	security	of	your	software,
leading	to	higher	customer	satisfaction	and	reduced	maintenance	costs.	Enabling	Test	Plans	in	Azure	DevOps	Enabling	test	plans	in	Azure	DevOps	is	a	straightforward	process	that	can	be	done	within	the	Azure	DevOps	portal.	Follow	these	steps	to	enable	test	plans	for	your	projects:	Log	in	to	your	Azure	DevOps	account.	Select	the	project	for	which	you
want	to	enable	test	plans.	Go	to	the	"Test	Plans"	tab	in	the	project	settings.	Click	on	the	"Enable	test	plans"	button.	Follow	the	on-screen	instructions	to	set	up	your	test	plans.	Once	you've	enabled	test	plans	for	your	project,	you	can	start	creating	test	suites,	test	cases,	and	test	configurations	to	kickstart	your	testing	efforts.	Key	Features	of	Azure	DevOps
Test	Plans	Azure	DevOps	test	plans	offer	a	wide	range	of	features	to	help	you	streamline	your	testing	process	and	ensure	better	software	quality.	Some	key	features	include:	Test	Suites:	Create	and	manage	test	suites	to	group	related	test	cases	together.	Test	Cases:	Define	individual	test	cases	with	detailed	steps,	expected	results,	and	assigned	testers.
Test	Configurations:	Define	different	configurations	for	running	tests,	such	as	browser	versions	or	operating	systems.	Test	Runs:	Execute	test	cases	and	track	the	results	in	real-time.	Test	Reports:	Generate	comprehensive	test	reports	to	analyze	test	results	and	identify	issues.	Enhancing	Software	Testing	with	Azure	DevOps	By	enabling	test	plans	in
Azure	DevOps,	you	can	elevate	your	software	testing	process	and	ensure	a	higher	quality	for	your	applications.	With	robust	testing	capabilities	and	seamless	integration	with	your	development	workflow,	Azure	DevOps	test	plans	empower	teams	to	deliver	bug-free	software	efficiently.	Start	leveraging	Azure	DevOps	test	plans	today	and	transform	the	way
you	test	your	applications!	azuredevops	#testplans	#softwaretesting	#qualityassurance	#devops	#testautomation	What	is	a	Test	Plan?	It	is	undeniable	that	one	of	the	many	aspects	that	sets	a	company	apart	from	others	is	the	quality	of	the	products	and	services	they	offer.	One	of	the	many	reasons	why	quality	products	are	essential	in	business	is	because
they	satisfy	your	clients,	and	good	customer	reviews	establish	your	business’	reputation.	Whether	you	are	managing	software	and	application	programming	business	or	a	start-up	toy	company,	testing	your	product	is	immensely	necessary.	However,	before	you	start	engaging	in	a	testing	process,	you	need	to	layout	a	test	plan	first.	A	test	plan	is	like	a	guide
book.	It	is	a	detailed	document	that	outlines	the	test	strategies,	objectives,	schedules,	and	deliverables	required	for	software	project	testing.	The	test	plan	also	serves	as	the	roadmap	of	your	testing	process,	whose	goal	action	plan	is	to	make	sure	that	there	are	no	problems	with	the	project	before	providing	it	to	your	clients.	It	also	serves	as	documentation
for	future	references.	Did	you	know	that	due	to	a	poor	test	plan,	the	recall	of	Takata	airbags	in	2016	has	been	the	costliest	at	26	billion	dollars	affecting	up	to	19	million	cars?	Aside	from	vehicle	recalls,	the	most	expensive	products	ever	recalled	due	to	a	lack	or	poor	test	planning	were	Merck	Vioxx	($8.9	billion	losses),	Volkswagen	emissions	($7.3	billion
loss),	Pfizer	Bextra	($3.3	billion	loss),	and	the	Toyota	vehicle	recall	($3.2	billion	loss).	With	increased	emphasis	on	product	safety	and	efficacy	testing,	the	United	States	Consumer	Product	Safety	Commission	reported	only	214	product	recalls	in	2019,	a	7%	decrease	from	the	previous	year’s	list.	The	Benefits	of	Software	System	Testing	It	is	important	to
make	sure	that	your	product	is	functioning	correctly.	Take	Apple	as	an	example.	It	will	not	be	called	the	most	successful	company	in	history	if	not	with	their	quality	products	such	as	iPhones.	According	to	BBC	News,	one	of	the	big	things	that	made	Apple	is	the	revolution	of	the	iPhone	since	it	was	launched	in	2007.	With	its	big	hit	in	the	market,	it	is	more
likely	guaranteed	that	Apple	products	are	of	excellent	quality.	With	this,	it	is	more	likely	guaranteed	that	Apple	ensured	that	all	features	in	the	product	work	at	its	best.	Regardless	of	what	type	of	business	you	are	running,	and	established	or	start-up	one,	it	is	always	necessary	to	ensure	that	all	software	system	products	that	you	provide	are	in	great
shape.	It	is	an	excellent	tool	for	business	optimization;	hence	it	should	not	be	neglected.	So,	whether	you	have	a	new	software	or	product,	it	is	essential	to	get	it	tested	first.	Here	are	some	of	the	reasons	why	software	system	testing	is	necessary.	Excellent	Quality	Product:	The	first	advantage	or	benefit	of	software	system	testing	is	that	it	allows	your
business	to	produce	excellent	and	reliable	quality	products.	And,	high-quality	products	attract	the	market.Satisfied	Clients	and	Customers:	It	is	frustrating	to	have	customers	knocking	at	your	door	asking	for	a	refund	because	they	are	unsatisfied	with	the	product.	With	software	or	product	testing,	you	will	have	an	excellent	quality	product	that	will	satisfy
the	needs	of	clients.	And	satisfied	and	happy	clients	will	more	likely	to	avail	of	your	products	again.Increases	Sales:	When	your	clients	find	your	products	reliable	and	worthy	of	the	price,	they	may	recommend	it	to	their	family	or	friends.	Hence,	you	will	gain	more	customers,	as	well	as	increase	your	business	sales	plan.Cut	Costs:	Although	software	system
testing	will	cost	you	some	money,	it	will	still	save	you	some	in	the	long	run.	Testing	your	software	system	products	before	launching	and	marketing	plan	it	out	to	the	public	ensures	that	they	function	well	and	do	not	need	constant	fixing.Enhances	User	Experience:	Following	a	testing	process	for	all	your	company	software	and	application	products
enhances	user	experience.	This	means	that	your	products	should	be	entirely	free	from	errors	that	may	cause	inconvenience.	How	To	Make	a	Test	Plan	A	test	plan	does	not	only	serve	as	a	roadmap	of	the	testing	process,	but	it	also	serves	as	a	means	of	communication	of	the	team.	It	also	sets	forth	standards	about	the	process,	such	as	what	needs	to	be
tested	and	what	does	not,	the	different	testing	strategies	and	approaches,	etc.	A	professionally	made	test	plan	ensures	that	all	features	of	the	software	product	are	covered	and	tested.	If	making	a	test	plan	from	scratch	is	inconvenient	for	you,	you	can	always	make	use	of	a	ready-made	template	that	you	can	find	in	this	post.	Simply	download	the	sample
template	that	suits	your	needs.	Nonetheless,	here	are	some	simple	steps	on	how	to	make	an	accurate	test	plan.	Step	1:	Analyze	the	Product	Begin	making	a	test	plan,	you	must	first	analyze	what	the	product	is	all	about.	It	is	important	to	state	an	overview	of	the	product	in	the	test	plan.	Software	product	analysis	is	necessary	because	it	allows	you	to
understand	the	significance	of	the	product	thoroughly.	It	allows	you	to	know	who	are	the	end-users	of	the	product,	what	it	is	used	for,	how	it	works,	and	what	elements	the	product	uses.	Make	sure	that	you	have	this	information	in	your	test	plan.	Step	2:	Define	the	Testing	Scope	and	Type	Once	you	have	already	analyzed	the	software	project,	the	next
thing	you	need	to	do	is	to	identify	the	testing	scope	and	the	testing	type.	The	testing	scope	should	include	information	about	what	components	of	the	project	to	be	tested.	Doing	this	allows	the	team	to	have	a	clear	understanding	of	what	is	tested	and	what	is	not.	As	for	the	testing	type,	it	refers	to	a	standard	test	procedure	formulated	to	determine	specific
areas	of	the	software	project.	The	testing	type	depends	on	what	part	of	the	project	is	being	tested.	But,	all	testing	types	have	the	same	goal,	which	is	to	ensure	that	the	project	is	good	before	releasing	it	to	clients.	Step	3:	Identify	Testing	Activities	and	Schedule	Now	that	you	have	determined	the	testing	scope	and	type,	it	is	now	time	to	identify	each	event
in	the	testing	process.	In	the	test	plan,	list	down	all	the	testing	activities	to	be	performed	with	its	corresponding	schedule	and	estimation.	Indicate	also	the	person	who	is	responsible	for	the	task.	Doing	this	is	essential	so	that	the	testing	team	will	be	guided	about	the	process.	Nevertheless,	make	sure	that	your	testing	activities	match	your	testing	scope.
This	is	to	establish	clarity	and	accuracy.	Step	4:	Incorporate	Testing	Strategies	Once	you	have	already	identified	the	testing	activities	and	its	corresponding	schedule,	the	next	thing	you	need	to	have	is	testing	strategies.	In	the	test	plan,	list	down	the	different	approaches	that	need	to	be	followed	to	execute	the	testing	process.	Remember,	a	good	strategy
makes	you	achieve	all	the	product	objectives.	Make	sure	that	the	strategic	plan	is	not	only	evident	in	the	test	plan	but	also	for	the	whole	testing	team	so	that	they	will	be	guided	on	how	to	conduct	the	software	project	testing	properly.	Include	also	the	testing	resources	and	tools	to	be	used	for	the	testing	process.	Step	5:	Generate	a	Test	Criteria	After	that,
the	next	thing	you	need	to	do	is	to	generate	and	place	test	criteria	on	the	test	plan.	In	every	testing	process,	test	criteria	are	necessary	because	this	is	where	the	success	of	the	project	will	be	based.	The	test	criteria	will	serve	as	your	guide,	whether	each	component	of	the	project	has	met	the	required	description	and	percentage	to	pass.	The	test	criteria
for	the	software	project	should	be	discussed	with	the	team	making	sure	that	the	criteria	are	accurate	for	the	project.	Step	6:	Write	a	Test	Result	Finalize	your	test	plan	while	writing	the	test	results.	By	this,	document	the	summary	of	the	testing	process	and	the	project	itself.	If	there	are	any	features	or	issues	that	need	to	be	fixed	before	the	final	approval,
make	sure	to	record	them	along	with	its	action	plan.	Also,	include	the	staff	or	member	of	the	team	that	is	responsible	for	doing	it.	Make	sure	that	this	section	of	the	test	plan	is	clearly	stated	and	well-defined	to	avoid	any	confusion	and	misunderstanding	that	will	jeopardize	the	system.	FAQs	The	test	plan	is	a	document	that	outlines	the	testing	process
standard	for	a	project	prepared	by	the	test	lead	or	manager.	A	test	plan	is	a	detailed	document	that	sets	the	testing	information	about	a	software	product.	It	contains	the	guidelines	for	testing,	tasks	and	schedule,	testing	resources,	and	testing	environment.	The	four	main	stages	of	testing	that	need	to	be	performed	before	the	product	launch	are	unit
testing,	integration	testing,	system	testing,	and	acceptance	testing.	A	test	Execution	strategy	is	a	document	that	outlines	the	different	approaches	or	styles	in	conducting	software	testing.	On	the	other	hand,	a	test	plan	is	a	written	document	that	provides	a	concrete	plan	for	the	testing	process.	A	Software	Testing	Life	Cycle	or	STLC	is	a	process	with
different	tasks	performed	to	improve	the	quality	of	a	software	system	product.	It	has	seven	phases,	which	include	the	requirement	phase,	planning	phase,	analysis	phase,	design	phase,	implementation	phase,	execution	phase,	conclusion	phase,	and	closure	phase.	It	is	no	doubt	that	testing	software,	mobile	application,	or	consumer	products	before	making
it	available	for	the	public	is	essential	because	it	gives	quality	assurance	and	customer	satisfaction,	which	are	two	of	the	many	aspects	of	a	successful	business.	However,	product	testing	needs	to	follow	a	clear	and	accurate	process	to	ensure	a	great	result.	That	is	why	it	is	important	to	establish	a	well-made	test	plan	that	will	serve	as	the	testing	team’s
guide	throughout	the	process.	A	test	plan	can	be	both	high-level	or	low-level,	depending	on	your	needs.	But	rest	assured	it	is	one	of	the	best	sample	plans	for	the	business	that	is	necessary	to	ensure	that	your	products	function	well	and	does	what	it	promised.	Type	of	document	A	test	plan	is	a	document	detailing	the	objectives,	resources,	and	processes	for
a	specific	test	session	for	a	software	or	hardware	product.	The	plan	typically	contains	a	detailed	understanding	of	the	eventual	workflow.	A	test	plan	documents	the	strategy	that	will	be	used	to	verify	and	ensure	that	a	product	or	system	meets	its	design	specifications	and	other	requirements.	A	test	plan	is	usually	prepared	by	or	with	significant	input	from
test	engineers.[1]	Depending	on	the	product	and	the	responsibility	of	the	organization	to	which	the	test	plan	applies,	a	test	plan	may	include	a	strategy	for	one	or	more	of	the	following:	Design	verification	or	compliance	test	–	to	be	performed	during	the	development	or	approval	stages	of	the	product,	typically	on	a	small	sample	of	units.	Manufacturing	test
or	production	test	–	to	be	performed	during	preparation	or	assembly	of	the	product	in	an	ongoing	manner	for	purposes	of	performance	verification	and	quality	control.	Acceptance	test	or	commissioning	test	–	to	be	performed	at	the	time	of	delivery	or	installation	of	the	product.	Service	and	repair	test	–	to	be	performed	as	required	over	the	service	life	of
the	product.	Regression	test	–	to	be	performed	on	an	existing	operational	product,	to	verify	that	existing	functionality	was	not	negatively	affected	when	other	aspects	of	the	environment	were	changed	(e.g.,	upgrading	the	platform	on	which	an	existing	application	runs).	A	complex	system	may	have	a	high-level	test	plan	to	address	the	overall	requirements
and	supporting	test	plans	to	address	the	design	details	of	subsystems	and	components.	Test	plan	document	formats	can	be	as	varied	as	the	products	and	organizations	to	which	they	apply.	There	are	three	major	elements	that	should	be	described	in	the	test	plan:	test	coverage,	test	methods,	and	test	responsibilities.	These	are	also	used	in	a	formal	test
strategy.[2]	Test	coverage	in	the	test	plan	states	what	requirements	will	be	verified	during	what	stages	of	the	product	life.	Test	coverage	is	derived	from	design	specifications	and	other	requirements,	such	as	safety	standards	or	regulatory	codes,	where	each	requirement	or	specification	of	the	design	ideally	will	have	one	or	more	corresponding	means	of
verification.	Test	coverage	for	different	product	life	stages	may	overlap	but	will	not	necessarily	be	exactly	the	same	for	all	stages.	For	example,	some	requirements	may	be	verified	during	design	verification	test,	but	not	repeated	during	acceptance	test.	Test	coverage	also	feeds	back	into	the	design	process,	since	the	product	may	have	to	be	designed	to
allow	test	access.	Test	methods	in	the	test	plan	state	how	test	coverage	will	be	implemented.	Test	methods	may	be	determined	by	standards,	regulatory	agencies,	or	contractual	agreement,	or	may	have	to	be	created	new.	Test	methods	also	specify	test	equipment	to	be	used	in	the	performance	of	the	tests	and	establish	pass/fail	criteria.	Test	methods	used
to	verify	hardware	design	requirements	can	range	from	very	simple	steps,	such	as	visual	inspection,	to	elaborate	test	procedures	that	are	documented	separately.	Test	responsibilities	include	what	organizations	will	perform	the	test	methods	and	at	each	stage	of	the	product	life.	This	allows	test	organizations	to	plan,	acquire	or	develop	test	equipment	and
other	resources	necessary	to	implement	the	test	methods	for	which	they	are	responsible.	Test	responsibilities	also	include	what	data	will	be	collected	and	how	that	data	will	be	stored	and	reported	(often	referred	to	as	"deliverables").	One	outcome	of	a	successful	test	plan	should	be	a	record	or	report	of	the	verification	of	all	design	specifications	and
requirements	as	agreed	upon	by	all	parties.	IEEE	829-2008,	also	known	as	the	829	Standard	for	Software	Test	Documentation,	is	an	IEEE	standard	that	specifies	the	form	of	a	set	of	documents	for	use	in	defined	stages	of	software	testing,	each	stage	potentially	producing	its	own	separate	type	of	document.[3]	These	stages	are:	Test	plan	identifier
Introduction	Test	items	Features	to	be	tested	Features	not	to	be	tested	Approach	Item	pass/fail	criteria	Suspension	criteria	and	resumption	requirements	Test	deliverables	Testing	tasks	Environmental	needs	Responsibilities	Staffing	and	training	needs	Schedule	Risks	and	contingencies	Approvals	The	IEEE	documents	that	suggest	what	should	be
contained	in	a	test	plan	are:	829-2008	IEEE	Standard	for	Software	and	System	Test	Documentation[3]	829-1998	IEEE	Standard	for	Software	Test	Documentation	(superseded	by	829-2008)[4]	829-1983	IEEE	Standard	for	Software	Test	Documentation	(superseded	by	829-1998)[5]	1008-1987	IEEE	Standard	for	Software	Unit	Testing[6]	1012-2004	IEEE
Standard	for	Software	Verification	and	Validation[7]	1012-1998	IEEE	Standard	for	Software	Verification	and	Validation	(superseded	by	1012-2004)[8]	1012-1986	IEEE	Standard	for	Software	Verification	and	Validation	Plans	(superseded	by	1012-1998)[9]	1059-1993	IEEE	Guide	for	Software	Verification	&	Validation	Plans	(withdrawn)[10]	Software	testing
Test	suite	Test	case	Test	script	Scenario	testing	Session-based	testing	IEEE	829	Ad	hoc	testing	^	Dale,	Nell;	Weems,	Chip;	Richards,	Tim	(2022-07-15).	Programming	and	Problem	Solving	with	C++.	Jones	&	Bartlett	Learning.	ISBN	978-1-284-15732-1.	^	Laganà,	Antonio;	Gavrilova,	Marina	L.;	Kumar,	Vipin;	Mun,	Youngsong;	Gervasi,	Osvaldo;	Tan,	C.	J.
Kenneth	(2004-05-07).	Computational	Science	and	Its	Applications	--	ICCSA	2004:	International	Conference,	Assisi,	Italy,	May	14-17,	2004,	Proceedings.	Springer	Science	&	Business	Media.	ISBN	978-3-540-22054-1.	^	a	b	829-2008	—	IEEE	Standard	for	Software	and	System	Test	Documentation.	2008.	doi:10.1109/IEEESTD.2008.4578383.	ISBN	978-0-
7381-5747-4.	^	829-1998	—	IEEE	Standard	for	Software	Test	Documentation.	1998.	doi:10.1109/IEEESTD.1998.88820.	ISBN	0-7381-1443-X.	^	829-1983	—	IEEE	Standard	for	Software	Test	Documentation.	1983.	doi:10.1109/IEEESTD.1983.81615.	ISBN	0-7381-1444-8.	^	1008-1987	-	IEEE	Standard	for	Software	Unit	Testing.	1986.
doi:10.1109/IEEESTD.1986.81001.	ISBN	0-7381-0400-0.	^	1012-2004	-	IEEE	Standard	for	Software	Verification	and	Validation.	2005.	doi:10.1109/IEEESTD.2005.96278.	ISBN	978-0-7381-4642-3.	^	1012-1998	-	IEEE	Standard	for	Software	Verification	and	Validation.	1998.	doi:10.1109/IEEESTD.1998.87820.	ISBN	0-7381-0196-6.	^	1012-1986	-	IEEE
Standard	for	Software	Verification	and	Validation	Plans.	1986.	doi:10.1109/IEEESTD.1986.79647.	ISBN	0-7381-0401-9.	^	1059-1993	-	IEEE	Guide	for	Software	Verification	and	Validation	Plans.	1994.	doi:10.1109/IEEESTD.1994.121430.	ISBN	0-7381-2379-X.	Public	domain	RUP	test	plan	template	at	Sourceforge	(templates	are	currently	inaccessible	but
sample	documents	can	be	seen	here:	DBV	Samples)	Retrieved	from	"	Within	Microsoft	Azure	DevOps,	Azure	Test	Plans	is	a	potent	solution	that	simplifies	software	testing	through	both	automated	and	manual	test	management.	Azure	Test	Plans	helps	teams	increase	test	efficiency,	regardless	of	the	size	of	the	project—from	small	project	goals	to
enterprise-level	applications.Do	not	pass	this	up!	Examine	the	most	important	lessons	you	will	learn:Makes	Test	Management	Easier	–	Easily	plan,	carry	out,	and	monitor	automated	and	manual	tests	in	one	location.Smooth	CI/CD	Integration	–	To	expedite	software	delivery,	run	tests	automatically	throughout	your	DevOps	pipelines.Improved	Tracking	&
Visibility	–	Easily	track	faults,	get	real-time	information,	and	guarantee	complete	test	coverage.Designed	for	Teams	&	Growth	–	It	facilitates	team	collaboration,	making	it	ideal	for	projects	of	all	sizes.Increases	Efficiency	with	Automation	–	Use	Azure	service	Automation	to	execute	dependable,	repeatable	tests	and	minimize	manual	labor.	To	begin,	arrange
test	cases	according	to	features	or	requirements	and	create	a	Software	Test	Suite	in	Azure	Test	Plans.	Reduce	human	labor	and	guarantee	consistency	by	using	Azure	Automation	to	run	automated	test	suites.	Software	delivery	is	accelerated	by	continuous	testing	within	CI/CD	pipelines	made	possible	by	a	smooth	interaction	with	Microsoft	Azure
DevOps.Teams	can	increase	test	coverage,	effectively	track	defects,	and	guarantee	high-quality	releases	with	less	risk	by	using	Azure	Test	Plans.	What	Is	Azure?With	features	including	networking,	storage,	processing	power,	and	artificial	intelligence,	the	Microsoft	Azure	cloud	platform	makes	it	possible	to	develop	and	operate	apps	effectively	while
maintaining	scalability	and	flexibility.	With	Azure	DevOps,	organizations	can	manage	test	cases,	run	tests,	and	guarantee	product	quality	with	Azure	Test	Plans.	While	Azure	Automation	increases	the	productivity	of	the	CI/CD	pipeline	by	automating	tasks,	test	suites	aid	in	test	organization.	Azure	services	offer	modern	software	development	tools	that	are
safe,	scalable,	and	flexible	for	companies	of	all	sizes.	What	Is	Azure	Test	Plans?Software	testing	is	much	easier	with	Azure	Test	Plans.	As	a	component	of	Azure	DevOps,	it	provides	teams	with	all	the	tools	they	need	to	manage	automated	and	manual	testing	without	becoming	overwhelmed.The	ability	to	construct	and	arrange	your	test	cases	is	what	makes
Test	Plans	so	awesome.	Related	tests	can	be	bundled	into	suites,	and	you	can	observe	the	results	as	they	are	generated.	You	can	have	your	tests	run	automatically	whenever	you	push	new	code	because	it's	built	into	Azure	DevOps.Azure	Test	Plans	can	help	you	whether	you're	experimenting	with	exploratory	testing	or	performing	your	standard	suite	of
regression	tests.		Key	Features	of	Azure	Test	Plans	in	Azure	DevOpsDetailed	Test	Management:	Develop,	run,	and	monitor	exploratory,	automated,	and	manual	test	cases.Smooth	CI/CD	Integration:	This	feature	allows	agile	processes	to	seamlessly	integrate	with	pipelines	for	continuous	testing.Compatibility:	Across	many	environments	is	ensured	by
cross-browser	and	cross-platform	testing.Test	steps:	These	are	parameterized	and	shared	to	improve	test	execution	efficiency	and	reusability.Real-Time	Reporting	&	Analytics:	Offers	information	on	defect	tracking	and	test	coverage.Bug	tracking	and	traceability:	help	to	improve	defect	resolution	by	connecting	tests	to	work	items.Collaboration	and
Scalability:	Facilitates	team-based	testing	for	both	startups	and	large	corporations.Why	Use	Azure	Test	Plans	for	DevOps	Testing?Within	Azure	DevOps,	Azure	Test	Plans	offer	a	smooth	method	for	managing	and	carrying	out	tests.	They	guarantee	the	delivery	of	high-quality	software	by	supporting	automated,	exploratory	testing	tools,	and	manual	testing
features.	Teams	may	increase	productivity	and	agility	by	integrating	testing	into	Azure	DevOps	CI/CD	pipelines	using	Test	Plans.	The	platform	makes	it	simpler	to	find	and	address	problems	by	providing	real-time	reporting,	defect	tracking,	and	traceability.	Additionally,	Azure	Test	Plans	facilitate	cross-platform	and	cross-browser	testing,	guaranteeing	a
seamless	user	experience.	Using	Azure	Test	Plans	improves	cooperation,	expedites	releases,	and	guarantees	dependable,	error-free	software	for	DevOps	testing	teams.Creating	and	Managing	Test	Cases	in	Azure	DevOpsAzure	DevOps	Test	Plans	offer	an	organized	method	for	effectively	developing	and	maintaining	test	cases.	Teams	can	better	execute
their	work	by	defining	test	scenarios,	setting	parameters,	and	organizing	test	suites	with	Azure	Test	Plans.	To	ensure	full	traceability,	the	platform	enables	testers	to	connect	test	cases	with	requirements.	For	quicker	validation,	teams	can	automate	tests	or	run	them	manually.	In	order	to	improve	issue	resolution,	Azure	DevOps	Test	Plans	also	include
real-time	reporting	and	defect	tracking.	Azure	Test	Plans	may	help	organizations	increase	test	coverage,	optimize	workflows,	and	confidently	deliver	high-quality	software.Procedure	for	Developing	Test	Cases	in	Azure	DevOps:Structured	and	effective	testing	is	ensured	by	creating	test	cases	in	Azure	DevOps	Test	Plans.	Take	these	actions:Step	1:	Open
the	Azure	DevOps	Test	Plans	page.	Navigate	to	the	Test	Plans	section	after	opening	Azure	DevOps.Step	2:	Click	"New	Test	Plan"	and	specify	test	suites	to	create	a	test	plan.Step	3:	Add	Test	Cases.	Type	in	the	parameters,	intended	outcomes,	steps,	and	test	title.Step	4:	Assign	Testers:	Assign	team	members	to	test	cases.Step	5:	Conduct	Tests:	Carry	out
automated	or	manual	tests.Step	6:	Track	&	Analyze:	To	keep	an	eye	on	outcomes	and	fix	bugs,	use	reports	in	Azure	Test	Plans.Teams	can	guarantee	software	testing	quality	and	traceability	using	Azure	DevOps	Test	Plans.How	to	Handle	Test	Case	Management	in	Azure	DevOps:Better	traceability	and	efficient	testing	are	guaranteed	by	effective	test	case
management	in	Azure	DevOps	Test	Plans.	Take	these	actions:Access	Azure	Test	Plans:	Go	to	Azure	DevOps	and	select	Test	Plans.Sort	Test	Suites:	Assemble	test	cases	into	suites	that	are	static,	requirement-based,	or	query-based.Edit	and	Update	Test	Cases:	Adjust	procedures,	anticipated	outcomes,	and	parameters	as	necessary.Assign	&	Prioritize:
Assign	test	cases	to	testers	and	establish	priorities	for	their	execution.Execute	&	Monitor	Progress:	For	efficiency,	run	tests	manually	or	automate	them.Analyze	Findings:	To	monitor	errors	and	enhance	quality,	use	Azure	Test	Plans'	dashboards	and	reports.How	to	Link	Test	Cases	with	User	Stories	in	Azure	DevOpsImproved	requirement	validation	and
traceability	are	guaranteed	when	test	cases	and	user	stories	are	connected	in	Azure	DevOps	Test	Plans.	Take	these	actions:Login	Azure	Portal:	Open	Azure	DevOps	from	the	Azure	Dashboard	after	logging	into	the	Azure	Portal.Navigate	to	Test	Plans:	After	choosing	your	project,	select	Azure	Test	Plans	from	the	left-hand	menu.To	open	a	test	case:	either
click	on	an	already-existing	one	or	start	from	scratch.Link	to	a	User	Story:	Look	for	and	associate	the	user	story	in	the	"Linked	Work	Items"	column.Save	and	Monitor	Your	Progress:	To	track	test	coverage	and	fix	bugs,	use	the	Azure	Admin	Portal.Look	for	updates	in	Azure	Files	if	Azure	is	unavailable.Executing	Test	Runs	in	Azure	DevOps:	A	Step-by-Step
GuideEffective	software	functionality	validation	is	ensured	by	doing	out	test	runs	in	Azure	DevOps	Test	Plans.	Take	these	actions:Open	the	Azure	Test	Plans	page:	Navigate	to	the	Test	Plans	section	after	launching	Azure	DevOps.Choose	a	Test	Suite:	Decide	which	test	suite	or	test	plan	includes	the	test	cases.Start	a	Test	Run:	To	run	automatic	or	manual
tests,	click	"Run."Log	Results	&	Defects:	Report	errors	and	mark	test	cases	as	blocked,	failed,	or	succeeded.Examine	Reports:	Gain	insight	into	execution	progress	and	failures	by	utilizing	Azure	Test	Plans	analytics.Teams	can	easily	monitor	and	improve	software	quality	with	Azure	DevOps	Test	Plans.How	to	Integrate	Azure	Test	Plans	with	CI/CD
PipelinesAzure	Test	Plans	can	be	integrated	with	Azure	Pipelines	to	improve	testing	and	expedite	release	cycles.	This	is	how	you	do	it:To	set	up:	an	Azure	DevOps	pipeline,	go	to	the	Azure	Pipelines	"Pipelines"	section	and	create	or	edit	your	pipeline.Add	the	Test	Execution	Task:	Add	tasks	from	Azure	Test	Plans	or	Visual	Studio	Test	to	run	test	cases	from
your	test	suite.Turn	on	Azure	Automation	to	optimize	your	testing	efforts	by	setting	it	up	to	run	tests	automatically	following	builds	or	deployments.Track	and	Evaluate	Outcomes:	Watch	test	results,	spot	mistakes,	and	improve	quality	with	Azure	Test	Plans.For	more	dependable	software	delivery,	teams	can	conduct	testing	tasks	constantly	by	integrating
Azure	Test	Plans	with	Azure	Pipelines.How	to	Track	and	Analyze	Test	Results	in	Azure	Test	PlansAzure	Test	Plans'	tracking	and	analysis	of	test	results	aid	in	ensuring	software	quality	and	spotting	problems	early.	Take	these	actions:Execute	Test	Suite:	Use	automated	pipelines	in	Azure	DevOps	or	Azure	Test	Plans	to	run	tests.View	Test	Results:	To	view
test	execution	information,	including	pass/fail	status,	select	the	"Runs"	tab	in	Azure	Test	Plans.Examine	Defects:	To	improve	defect	management,	connect	unsuccessful	tests	to	work	items.Make	use	of	Azure	Automation	to	automate	test	reporting	and	execution	for	ongoing	feedback.Make	better	decisions	by	using	Azure's	Reports	and	Dashboards	to
visualize	test	coverage	and	trends.Teams	may	improve	software	dependability	by	effectively	tracking	and	analyzing	test	results	with	Azure	Test	Plans.Manual	vs.	Automated	Testing	in	Azure	Test	PlansBoth	automated	and	manual	testing	are	essential	components	of	Azure	Test	Plans	that	guarantee	program	quality.	For	exploratory	testing	and	situations
needing	human	intuition,	a	manual	test	plan	is	perfect.	It	enables	direct	interaction	between	testers	and	the	application,	yielding	insightful	feedback.	However,	for	repeatable	and	regression	testing,	automated	testing	with	Azure	DevOps	services	and	Azure	automation	is	effective.	Teams	can	perform	tests	more	quickly	and	consistently	by	incorporating
automated	tests	into	a	test	suite.	Both	approaches	are	supported	by	Azure	Test	Plans,	enabling	teams	to	select	the	most	appropriate	strategy	depending	on	project	requirements	and	test	requirements.Best	Practices	for	Using	Azure	Test	Plans	EffectivelyUse	these	best	practices	to	get	the	most	out	of	Azure	Test	Plans:Organize	Test	Suites:	To	improve
management,	arrange	your	tests	into	logical	test	suites.Use	Azure	DevOps	Automation:	To	boost	productivity	and	cut	down	on	manual	labor,	use	Azure	DevOps	to	automate	repeated	tests.Link	Work	Items:	To	guarantee	traceability	and	improve	teamwork,	link	tests	to	user	stories	and	problems.Employ	exploratory	testing	to	address	various	testing
requirements	by	combining	automated	and	manual	testing.Track	Test	Results:	To	find	and	fix	problems	early,	examine	test	results	frequently	in	Azure	Test	Plans.Teams	may	improve	software	quality	in	Azure,	increase	test	coverage,	and	optimize	workflows	by	implementing	these	best	practices.Common	Challenges	and	How	to	Overcome	ThemTeams	may
run	into	issues	like	inconsistent	test	coverage,	delayed	test	execution,	and	test	suite	management	when	combining	Azure	Test	Plans	with	Azure	DevOps.	Take	into	account	the	following	tactics	to	deal	with	these	problems:Optimize	Test	Suites:	To	enhance	management	and	expedite	execution,	group	tests	into	requirement-based,	query-based	test
suites.Automate	Testing:	To	minimize	human	error	and	automate	repetitive	testing	tasks,	use	Azure	DevOps	Automation.Track	Progress:	You	can	keep	an	eye	on	the	real-time	status	of	your	tests	by	using	the	Execute	Tab,	Visual	Studio	Test,	and	picture	action	logs.Improve	Cooperation:	Enhance	teamwork	for	more	effective	testing	by	connecting	Azure
DevOps	services	with	other	technologies	to	promote	better	communication.Through	the	implementation	of	these	testing	techniques,	teams	may	guarantee	improved	quality	assurance,	more	seamless	user	acceptability	testing,	and	faster	software	delivery.Enhancing	Security	&	Compliance	in	Azure	Test	PlansAzure	Test	Plans	must	provide	security	and
compliance	in	order	to	safeguard	sensitive	data	and	satisfy	legal	obligations.	First,	you	can	limit	access	to	test	plans	and	test	suites	with	Azure	DevOps'	strong	role-based	access	control.	To	ensure	that	security	measures	are	applied	consistently	across	all	environments,	implement	Azure	DevOps	automation	for	consistent	test	execution.	Maintain
traceability	by	connecting	test	cases	to	pertinent	work	items	and	auditing	test	results	on	a	regular	basis.	Use	secure	pipelines	for	automated	testing	and	enforce	data	protection	regulations	within	Azure	Test	Plans	to	improve	compliance.	You	can	guarantee	a	safe	and	legal	testing	procedure	in	Azure	by	adhering	to	these	guidelines.SummaryThis	blog	has
explained	how	Azure	Test	Plans'	extensive	testing	architecture	enhances	the	software	development	process.	Teams	may	efficiently	manage	testing	efforts	and	guarantee	sufficient	test	coverage	by	employing	requirement-based,	query-based	test	suites,	and	static	suites.	Functional	tests	and	user	acceptability	testing	are	among	the	testing	methodologies
that	Azure	Test	Plans	provide,	whether	automated	or	manual.	We	looked	at	how	integrating	Azure	DevOps	automation	and	DevOps	tools	may	improve	testing	procedures	and	speed	up	software	delivery.	The	software	offers	useful	insights	into	test	execution	by	enabling	real-time	reporting	and	tracking	of	test	results.	Furthermore,	tools	like	exploratory
testing	services	and	browser-based	test	management	solutions	facilitate	testing	workflows,	guaranteeing	a	smooth	software	development	lifecycle	and	better	software.People	Also	AskWhat	are	the	different	types	of	test	plans?Different	types	of	test	plans	include	Requirement-Based	Test	Suites,	user	acceptance	testing,	basic	test	suites,	and	testing
strategies	for	various	testing	activities.What	is	the	difference	between	a	test	suite	and	a	test	plan?A	test	plan	outlines	overall	testing	activities,	while	a	test	suite	groups	related	query-based	suites,	including	user	acceptance	testing	and	planned	testing.What	is	a	test	execution	plan?A	test	execution	plan	outlines	testing	activities,	individual	test	steps,	and
testing	environments	for	running	tests	using	Visual	Studio	Test	and	testing	tools.Is	Azure	free	for	testing?Azure	offers	free	tiers	for	testing,	providing	basic	test	suites	and	tools	for	modern	software	development	teams	to	manage	current	status	and	image	action	logs.How	do	I	delete	test	plans	in	Azure	Devops?To	delete	test	plans	in	Azure	DevOps,	go	to
the	Test	Plans	section,	select	the	plan,	and	click	Delete	using	the	browser	extension.	Azure	DevOps	is	a	powerful	suite	of	tools	that	streamlines	the	planning,	development,	testing,	and	delivery	of	software.	It	seamlessly	integrates	into	DevOps	workflows,	helping	to	maintain	software	quality	and	reliability.	To	ensure	the	updates	and	the	workflow	work	well

and	don’t	cause	any	issues	in	the	future,	performing	Azure	DevOps	testing	is	important	for	maintaining	software	quality	throughout	the	DevOps	lifecycle.	It	ensures	that	software	updates	function	as	intended,	remain	defect-free,	and	meet	business	and	customer	requirements.	What	Is	Azure	Test	Plans?	Azure	Test	Plans	is	a	modern	test	management
module	integrated	with	the	Azure	DevOps	ecosystem.	It	is	a	powerful	Azure	DevOps	testing	tool	that	enables	teams	to	manage	test	plans,	test	suites,	and	test	cases	throughout	the	Software	Development	Life	Cycle	(SDLC).	This	Azure	DevOps	testing	solution	supports	both	manual	and	automated	testing	needs,	making	it	an	invaluable	tool	for	modern
software	development	teams.	At	its	core,	Azure	Test	Plans	is	designed	to	be	a	centralized	testing	environment	where	development	teams,	Quality	Assurance	(QA)	professionals,	and	business	analysts	can	collaborate	effectively.	It	acts	as	a	centralized	repository	for	all	testing	activities,	ensuring	that	everyone	involved	in	the	project	has	access	to	the	same
testing	information	and	can	work	collaboratively	towards	quality	objectives.	Azure	Test	Plans	offer	a	robust	set	of	tools	designed	to	streamline	testing	workflows	and	ensure	comprehensive	test	coverage.	Below	are	some	of	its	core	key	features:	Test	Planning:	Streamline	the	management	test	plans,	suites,	and	cases	to	align	with	project	objectives.	Test
Execution:	Perform	manual	and	automated	tests	with	real-time	result	tracking.	Test	Data	and	Parameters:	Simplify	test	data	management	for	parameterized	testing	scenarios.	Exploratory	Testing:	Utilize	browser	extensions	for	ad-hoc	and	exploratory	testing.	Test	Automation:	Integrate	automated	testing	seamlessly	into	CI/CD	pipelines.	Bug	Tracking:
Capture	detailed	diagnostics,	including	screenshots	and	videos,	to	resolve	issues	efficiently.	Security	and	Permissions:	Implement	role-based	access	and	secure	testing	environments.	Note	Create	complete	test	plans,	ensure	software	quality,	and	streamline	your	testing	process.	Try	LambdaTest	Today!	How	Azure	Test	Plans	Work?	Azure	Test	Plans
simplifies	test	management	with	three	core	artifacts,	namely,	Test	Plan,	Test	Suite,	and	Test	Case.	As	part	of	the	Azure	DevOps	testing	ecosystem,	it	helps	enhance	the	reusability	via	the	Shared	Steps	and	Shared	Parameters	are	work	items	stored	in	Azure	DevOps.	These	features	enable	efficient	management	of	common	test	procedures	and	variable	test
data,	helping	you	streamline	the	phases	of	the	DevOps	lifecycle.	Here	is	how	they	work:	Test	Plan:	A	container	for	test	suites	and	test	cases,	including	configurations,	shared	test	steps,	and	parameters.	It	allows	the	grouping	of	test	suites	or	individual	test	cases	and	can	use	static,	requirement-based,	or	query-based	test	suites.	Test	Suite:	A	collection	of
test	cases	grouped	under	a	common	scenario	within	a	test	plan.	It	simplifies	tracking	the	status	of	related	test	cases.	Test	Case:	A	set	of	steps	designed	to	validate	specific	aspects	of	code	or	deployment.	Test	cases	can	exist	independently	within	a	test	plan	or	be	part	of	the	suite.	Shared	Steps:	Reusable	test	procedures	that	can	be	referenced	across
multiple	test	cases	to	avoid	duplication.	Shared	Parameters:	Parameters	(marked	with	“@”	in	test	steps)	that	allow	reusing	test	data	across	multiple	test	cases	with	different	data	sets.	How	to	Create	a	Test	Plan	in	Azure	DevOps?	Creating	a	test	plan	in	Azure	DevOps	involves	several	steps,	from	defining	test	cases	to	assigning	testers	and	organizing	test
suites	to	ensure	complete	test	coverage.	As	part	of	Azure	DevOps	testing	workflows,	this	helps	streamline	the	testing	workflow	and	track	the	progress	effectiveness.	To	effectively	create	and	manage	test	plans	in	Azure	DevOps,	it’s	essential	to	meet	specific	prerequisites	concerning	access	and	project	setup.	Access	Requirements:	Access	Level:	Users
must	have	at	least	a	Basic	access	level	to	execute	tests	and	mark	outcomes.	To	create	and	manage	test	plans,	test	suites,	and	test	cases,	a	Basic	+	Test	Plans	access	level	is	required.	Alternatively,	subscriptions	like	Visual	Studio	Enterprise,	Visual	Studio	Test	Professional,	or	MSDN	Platforms	also	grant	equivalent	access.	Permissions:	Ensure	that
permissions	are	configured	appropriately:	Edit	work	items	in	this	node:	Allows	adding	or	modifying	test	plans,	test	suites,	test	cases,	and	related	work	items.	Manage	test	plans:	Enables	modification	of	test	plan	properties,	including	build	and	test	settings.	Manage	test	suites:	Permits	creation,	deletion,	and	modification	of	test	suites,	as	well	as	managing
test	cases	within	them.	Project	Setup:	Project	Access:	Users	should	be	added	to	the	relevant	Azure	DevOps	project	to	gain	access	to	its	resources.	Area	Path	Configuration:	Set	the	appropriate	area	paths	to	organize	work	items	effectively.	Configure	permissions	under	these	area	paths	to	control	access	to	test	artifacts.	Iteration	Path	Configuration:	Define
iteration	paths	to	manage	sprints	or	release	cycles,	ensuring	that	test	plans	align	with	project	timelines.	Creating	a	New	Test	Plan	Follow	the	below	steps	to	access	the	test	plan	module:	Log	in	to	your	Azure	DevOps	account	and	navigate	to	the	project	where	you	want	to	manage	test	plans.	In	the	left-hand	menu,	locate	and	click	on	Test	Plans.	This	module
serves	as	the	central	hub	for	managing	all	testing	activities.	If	the	Test	Plans	module	isn’t	visible,	ensure	that	your	access	level	includes	the	Test	Plans	extension.	Inside	the	Test	Plans	hub,	click	on	the	New	Test	Plan	button.	Provide	the	following	details:	Name:	A	descriptive	title	for	the	test	plan.	Area	Path:	Select	the	relevant	project	area	to	which	this
test	plan	belongs.	Iteration	Path:	Specify	the	sprint	or	release	cycle	this	test	plan	is	associated	with.	Click	on	the	Create	button	to	create	a	test	plan.	With	the	above	steps,	you	have	now	created	a	test	plan	under	which	you	can	add	various	test	suites	and	test	cases.	Adding	Test	Suites	Test	suites	allow	you	to	organize	test	cases	within	your	test	plan.	There
are	three	types	of	test	suites	in	Azure	DevOps:	Static	Test	Suites:	It	is	used	to	group	manual	test	cases	often	used	for	nested	suites	or	exploratory	testing.	To	create,	click	New	Suite	→	Static	suite.	Name	the	suite	appropriately	and	save	it.	Requirement-Based	Test	Suites:	Automatically	include	all	test	cases	linked	to	a	specific	requirement,	enabling
traceability	and	alignment	with	acceptance	criteria.	They	support	collaboration	across	roles	like	QA,	developers,	and	BAs	by	creating	a	shared	source	of	truth.	To	create,	click	New	Suite	→	Requirement	based	suite.	Select	a	requirement	to	associate	this	creates	traceability	between	requirements	and	test	cases.	Query-Based	Test	Suites:	Use	ad-hoc	queries
to	group	test	cases	based	on	specific	criteria,	such	as	tags	or	iteration	cycles.	These	suites	are	ideal	for	flexible,	requirement-independent	test	scenarios.	To	create,	click	New	Suite	→	Query	based	suite.	Define	a	query	to	filter	and	include	test	cases	meeting	those	conditions.	After	creating	a	test	suite,	teams	can	execute	the	associated	test	cases,	ensuring
requirements	with	development	goals	are	met.	Creating	Test	Cases	Once	test	suites	are	in	place,	create	the	test	cases	under	them	to	organize	and	group	the	test	cases.	Here’s	how	to	create	test	cases:	Select	a	test	suite	under	your	test	plan.	Click	New	Test	Case.	Fill	in	the	details:	Title:	Provide	a	concise,	descriptive	title	for	the	test	case.	Steps:	List	the
steps	to	perform	the	test	and	include	expected	outcomes	for	each	step.	Priority:	Set	the	priority	level	(High,	Medium,	Low)	based	on	the	test	case’s	importance.	Tags:	Use	tags	to	group	or	categorize	test	cases.	Save	the	test	case.	You	can	create	additional	test	cases	as	needed.	Assigning	Configurations	and	Testers	Test	configuration	and	tester	assignment
are	crucial	steps	in	Azure	DevOps	test	management	that	ensure	proper	test	coverage	and	responsibility	allocation.	Here’s	how	to	manage	these	settings:	Assigning	Configurations:	Select	a	test	suite	or	specific	test	cases.	Open	the	context	menu	and	choose	the	Assign	configuration	option.	Select	configurations	(e.g.,	OS,	browsers,	devices)	to	ensure	the
test	plan	covers	diverse	scenarios.	Save	the	configuration	assignments.	Assigning	Testers:	Select	the	test	suite	or	test	cases	you	want	to	assign.	Open	the	context	menu	and	select	Assign	testers	to	run	all	tests.	Add	team	members	responsible	for	executing	these	tests.	Save	the	assignments.	How	to	Execute	Test	Cases	on	Azure	DevOps	Test	Plan?	Efficient
execution	of	test	cases	is	crucial	for	maintaining	software	quality.	Azure	DevOps	testing	provides	a	robust	solution	to	facilitate	this	process,	ensuring	comprehensive	test	coverage	and	streamlined	issue	tracking.	Running	Azure	DevOps	testing	can	be	done	in	two	ways:	Manual	Testing:	Access	Test	Runner:	Navigate	to	the	Test	Plans	module	and	select	the
desired	test	case.	Click	on	Run	for	a	web	application	to	launch	the	Test	Runner.	Execute	Steps:	Follow	each	test	step	as	outlined,	marking	them	as	pass	or	fail	based	on	the	outcomes.	Capture	Observations:	Utilize	the	Test	Runner	to	record	any	observations,	take	screenshots,	or	note	comments	during	execution.	Automated	Testing:	Integration:	Configure
automated	tests	to	run	as	part	of	your	build	or	release	pipelines.	Execution:	Upon	triggering	the	pipeline,	tests	execute	automatically,	and	results	are	captured	within	Azure	DevOps.	How	to	Manage	and	Analyze	Test	Results?	After	executing	tests,	analyzing	the	results	is	essential	for	assessing	application	quality	and	identifying	areas	for	improvement.
Viewing	Test	Reports:	Test	Results	Overview:	Access	the	Runs	tab	within	the	Test	Plans	module	to	view	the	status	of	test	executions,	including	pass	rates	and	failure	details.	Detailed	Reports:	For	automated	tests,	navigate	to	the	Pipelines	section	and	select	the	relevant	build	or	release	to	review	detailed	test	reports.	Analyzing	Metrics	Progress	Reports:
Utilize	the	Progress	report	feature	to	track	the	status	of	planned	tests,	monitor	testing	progress,	and	analyze	metrics	such	as	pass/fail	rates	and	test	execution	trends.	Test	Analytics:	Leverage	Test	Analytics	to	gain	near	real-time	visibility	into	your	test	data,	helping	to	improve	pipeline	efficiency	and	identify	bottlenecks.	Continuous	Improvement	Identify
Patterns:	Analyze	test	results	to	detect	recurring	issues	or	patterns	that	may	indicate	underlying	problems	in	the	codebase.	Refine	Test	Cases:	Based	on	insights	gained,	update	and	improve	test	cases	to	enhance	coverage	and	effectiveness.	Feedback	Loop:	Establish	a	feedback	loop	with	development	teams	to	address	defects	promptly	and	iteratively
improve	the	software.	Common	Challenges	and	Troubleshooting	Azure	DevOps	testing	helps	in	managing	and	executing	tests	within	the	SDLC.	However,	teams	often	encounter	challenges	such	as	test	flakiness,	managing	test	data,	and	resolving	permission	issues.	Addressing	these	challenges	is	crucial	for	maintaining	efficient	and	reliable	Azure	DevOps
testing	processes.	Challenge	1:	Handling	Test	Flakiness	Tests	produce	inconsistent	results,	passing	or	failing	intermittently	without	any	changes	to	the	code	or	environment.	Solution:	Flaky	Test	Management:	Use	Azure	DevOps	to	detect	and	manage	flaky	tests,	tagging	them	to	prevent	build	failures.	Test	Rerun	Configuration:	Configure	test	reruns	to
isolate	genuine	issues	from	flaky	behaviors.	Challenge	2:	Managing	Test	Data	Ensuring	data	consistency,	handling	sensitive	information,	and	maintaining	the	availability	of	data	across	different	environments.	Solution:	Test	Configurations:	Define	variables	like	OS,	browsers,	etc.,	for	comprehensive	test	coverage.	Data	Management	Tools:	Use	tools	to
create,	mask,	and	provision	test	data	reflecting	production	environments.	Challenge	3:	Resolving	Permission	Issues	Inadequate	access	control	leads	to	unauthorized	access,	inability	to	edit/view	test	artifacts,	and	collaborative	challenges.	Solution:	Access	Levels	and	Permissions:	Configure	permissions	for	specific	tasks	like	managing	test	plans	and	editing
work	items.	Stakeholder	Access:	Ensure	users	have	appropriate	access	levels	(e.g.,	Basic	or	Basic	+	Test	Plans).	To	overcome	such	challenges,	integrating	Azure	DevOps	Pipelines	with	cloud-based	platforms	helps	streamline	the	DevOps	and	testing	workflows	by	providing	scalable	infrastructure	and	enabling	automated,	cross-environment	testing.	A	cloud
testing	platform	allows	you	to	integrate	with	CI/CD	tools	to	enhance	and	accelerate	issue	detection	and	resolution,	ensuring	seamless	application	performance	and	reducing	time-to-market.	Azure	DevOps	helps	to	automatically	build,	test,	and	deploy	your	projects	with	Continuous	Integration	in	various	production	environments.	So	your	automation	test
scripts	can	run	successfully	on	Azure	Pipeline.	However,	executing	test	scripts	in	Azure	DevOps	testing	can	sometimes	be	time-consuming	and	hectic.	This	is	where	the	LambdaTest	plugin	can	be	used	in	the	Azure	pipeline	to	ease	the	workflow	and	automate	the	tests.	LambdaTest	is	an	AI-native	test	execution	platform	that	lets	you	perform	manual	and
automated	tests	at	scale	across	5000+	real	devices,	browsers	and	OS	combinations.	This	platform	not	only	allows	you	to	run	tests	but	also	integrates	with	Azure	and	other	DevOps	tools	to	ensure	a	smooth	feedback	loop,	testing,	and	DevOps	workflow.	Check	LambdaTest	Extension	On	Azure	DevOps	Marketplace	There	are	a	few	benefits	mentioned	below
when	using	the	LambdaTest	plugin	for	Azure	DevOps	testing.	Simple	Account	Integration:	You	can	easily	set	up	your	LambdaTest	account	in	Azure	Pipeline	using	your	account	credentials,	enabling	a	smooth	and	quick	integration	process.	Enhanced	Environment	Testing:	Use	the	LambdaTest	Tunnel	to	test	various	production	environments,	such	as
internal,	development,	and	staging.	Streamlined	Test	Results	Fetching:	Embed	or	fetch	LambdaTest	test	results	in	your	project’s	job	results,	as	it	allows	easy	access	to	key	test	data	for	improved	tracking	and	reporting.	Detailed	Test	Insights:	Get	in-depth	visibility	of	your	test	execution,	capture	screenshots,	mark	bugs,	plot	graphs,	and	more;	you	can	view
everything	from	the	LambdaTest	automation	dashboard.	Install	LambdaTest	Extension	from	the	Azure	DevOps	Marketplace	Follow	the	below	steps	to	install	the	LambdaTest	extension:	Go	to	the	Azure	DevOps	marketplace	and,	under	the	Azure	DevOps	tab,	search	for	LambdaTest	in	the	search	box.	In	the	results	window,	you	will	see	an	option	showing	the
LambdaTest	extension.	Open	the	found	result	and	click	on	the	Get	it	free	button	to	get	the	LambdaTest	Extension	for	free	in	your	organization.	Select	an	Azure	DevOps	organization	and	click	“Install.”	The	LambdaTest	extension	will	be	installed	in	this	organization.	Once	finished,	you	will	see	Done	at	the	top,	indicating	that	the	LambdaTest	Extension	has
been	successfully	installed.	You	can	proceed	to	your	organization	to	see	the	extension.	By	integrating	LambdaTest	into	Azure	DevOps	testing	pipelines,	teams	can	significantly	improve	test	efficiency,	enhance	collaboration,	and	reduce	time-to-market.	To	integrate	this	plugin,	you	can	also	follow	the	detailed	guide	on	integrating	LambdaTest	with	Azure
Pipelines.	This	support	document	helps	you	set	up	the	plugin	and	provides	a	thorough	guide	on	how	to	view	results	on	LambdaTest.	Best	Practices	for	Azure	DevOps	Test	Plans	When	creating	a	test	plan	in	Azure	DevOps,	consider	the	following	best	practices	to	ensure	effective	testing	and	successful	software	releases:	Define	clear	test	objectives	and
scope,	including	which	features	need	testing	and	specific	quality	goals	you	want	to	achieve	through	your	testing	efforts.	Organize	test	cases	into	logical	test	suites	based	on	functionality,	linking	them	directly	to	requirements	and	user	stories	for	traceability.	Establish	comprehensive	test	environments	(dev,	staging,	prod)	and	prepare	diverse	test	data	sets
covering	valid,	invalid,	and	boundary	cases.	Choose	appropriate	testing	strategies	combining	manual,	automated,	and	exploratory	testing	approaches	based	on	project	needs	and	risks.	Assign	roles	and	responsibilities	within	the	team,	specifying	who	will	create,	execute,	and	review	test	cases.	Integrate	the	test	plan	seamlessly	with	your	Agile	development
process,	aligning	with	sprints	and	releases	while	regularly	reviewing	and	updating	based	on	project	progress.	Conclusion	Azure	DevOps	Test	Plans	offers	a	comprehensive	and	integrated	test	management	solution	that	empowers	teams	to	plan,	execute,	and	monitor	their	testing	activities	effectively	throughout	the	software	development	lifecycle.	As
organizations	adopt	Agile	and	DevOps	methodologies,	the	relevance	of	Azure	Test	Plans	has	grown,	helping	teams	maintain	high	standards	of	software	quality	while	adapting	to	fast-paced	development	environments.	Prominent	controversies	surrounding	Azure	Test	Plans	often	relate	to	its	integration	complexities	and	the	learning	curve	associated	with	its
comprehensive	feature	set,	which	some	users	may	find	overwhelming.	Additionally,	the	platform’s	reliance	on	Azure	DevOps	necessitates	a	commitment	to	the	Microsoft	ecosystem,	which	can	be	a	consideration	for	organizations	evaluating	alternative	solutions.	The	future	development	of	Azure	Test	Plans	is	focused	on	enhancing	the	capabilities	of	test
management	and	integrating	more	advanced	features	to	support	the	evolving	needs	of	software	development	teams.	One	of	the	key	areas	of	improvement	is	the	continued	emphasis	on	combining	manual	and	automated	testing	processes,	fostering	a	collaborative	environment	where	all	team	members	contribute	to	quality	assurance	efforts.	This	shift
reflects	the	modern	understanding	that	quality	is	a	shared	responsibility	across	development,	testing,	and	product	management	roles.	Nevertheless,	Azure	Test	Plans	continue	to	evolve,	addressing	user	feedback	and	expanding	its	functionalities	to	meet	the	changing	landscape	of	software	testing.	As	part	of	a	broader	movement	toward	continuous
improvement	in	testing	practices,	Azure	Test	Plans	is	positioned	as	a	vital	tool	for	teams	aiming	to	enhance	their	software	delivery	processes,	ensure	compliance	with	business	requirements,	and	foster	a	culture	of	collaboration	and	feedback	across	all	stages	of	development.	You	must	select	a	test	suite	from	the	Azure	Test	Plans	and	run	the	test	suites.
Yes,	it	has	a	test	management	tool,	named	Azure	Test	Plans.	Azure	DevOps	offers	Requirement-Based	Test	Suites	(linked	to	specific	requirements),	Query-Based	Test	Suites	(grouped	by	specific	criteria),	and	Static	Test	Suites	(manually	selected	test	cases).	When	a	test	fails,	Test	Runner	can	automatically	create	bugs	with	pre-populated	details,	including
test	steps,	system	information,	and	diagnostic	data,	while	maintaining	traceability	with	test	cases	and	requirements.	The	three	core	artifacts	are	the	Test	Plan	(container	for	suites	and	cases),	Test	Suite	(collection	of	related	test	cases),	and	Test	Case	(set	of	steps	to	validate	specific	aspects).	Citations	Software	development	keeps	changing	consistently,
and	we	often	need	to	update	our	software	quickly.	To	make	sure	these	updates	work	well	and	don’t	cause	problems	in	the	future,	we	need	to	use	good	testing	methods	and	strategies.	One	of	these	strategies	is	to	create	test	plan	in	Azure	DevOps,	a	powerful	tool	designed	to	simplify	the	development	process	and	ensure	the	delivery	of	robust	and	error-free
applications.In	this	article,	we’ll	teach	you	how	to	use	Azure	DevOps,	how	to	create	a	test	plan	in	Azure	DevOps,	and	how	they	work.	Whether	you	are	a	seasoned	software	developer	or	a	newcomer	to	Azure	DevOps,	you’ll	find	practical	tips	in	this	guide	to	optimize	your	testing	procedures	and	boost	the	quality	of	your	software	releases.Azure	test	plans:
how	to	create	and	use	themAzure	DevOps	is	a	comprehensive	platform	that	supports	the	entire	software	development	lifecycle	and	equips	the	development	team	with	tools	to	plan,	develop,	test,	and	deliver	software	efficiently.	Among	its	many	features,	Azure	DevOps	test	plans	emerge	as	a	critical	aspect	for	managing	and	executing	testing	activities.What
is	the	Azure	Test	Plan?Azure	Test	Plan	is	a	test	management	and	execution	toolset	offered	by	Microsoft	as	part	of	its	Azure	DevOps	services.	It	assists	software	developers	and	testers	in	managing	testing	efforts	in	the	software	development	lifecycle.Azure	Test	Plan	is	an	effective	tool	for	development	teams	that	follows	Agile	and	DevOps	development
methodologies,	as	it	helps	to	ensure	the	quality	of	software	through	effective	test	management	and	execution.	It	offers	flexibility	in	terms	of	manual	and	automated	testing,	making	it	suitable	for	a	wide	range	of	testing	scenarios.Below	are	the	key	capabilities	of	the	Azure	Test	Plan.With	Azure	test	Plan,	you	can	create	test	plans,	define	test	suites,	and
organize	test	cases.	Working	collaboratively,	testers	and	test	managers	can	create	test	cases	based	on	specific	requirements.Azure	Test	plan	allows	testers	to	execute	test	cases	and	store	their	results.	On	top	of	that,	the	tester	can	mark	the	test	case	as	fail,	pass,	blocked,	or	not	executed.It	supports	data-driven	testing	where	the	users	can	run	the	same
test	case	with	multiple	sets	of	input	data	to	verify	how	an	application	behaves	under	various	conditions.It	allows	users	to	perform	exploratory	testing	sessions	where	testers,	instead	of	following	scripted	test	cases,	explore	the	application	dynamically.	It’s	an	unscripted	testing	method	where	testers	rely	on	their	domain	knowledge	and	experience	to	detect
usability	issues	and	other	problems	within	the	software.It	integrates	with	automation	tools	and	frameworks	and	allows	users	to	automate	the	execution	of	test	cases	and	include	automation	tests	in	their	test	plans.You	can	track	bugs	and	issues	directly	from	the	Azure	DevOps	series,	making	it	easier	to	track	and	follow	up	on	bugs	in	your	application	ahead
of	the	deployment.You	can	manage	access	and	permissions	for	different	team	members	to	control	who	can	create,	execute,	and	manage	tests.How	do	they	work?Azure	DevOps	test	plans	provide	an	efficient	way	to	manage	testing	activities	within	the	Azure	DevOps	environment.	Here	is	how	they	work:Test	Plans	in	Azure	DevOps	allow	you	to	plan	your
testing	efforts.	You	can	create	test	suites	and	organize	test	cases	within	these	suites.	These	test	cases	can	be	designed	to	cover	different	aspects	of	your	application,	such	as	functionality,	integration,	or	regression	testing.You	can	create	test	cases	within	the	Azure	DevOps	test	plans.	Each	test	case	includes	details	about	what	needs	to	be	tested,	steps	to
follow,	and	expected	results.	These	test	cases	act	as	a	roadmap	for	your	testing	activities.When	it’s	time	to	start	testing,	you	can	assign	test	cases	to	testers	and	the	testing	environment.	Testers	can	then	execute	the	test	cases,	follow	the	defined	steps,	and	provide	feedback	on	the	results.Azure	DevOps	Test	Plans	offer	traceability	features.	This	means	you
can	link	test	cases	to	user	stories,	features,	or	requirements,	ensuring	testing	meets	your	project	goals.	On	top	of	that,	this	traceability	helps	in	tracking	progress	and	ensures	comprehensive	coverage.Test	results	and	reportingAs	testers	execute	test	cases,	they	can	mark	them	as	pass,	fail,	or	blocked,	and	provide	comments.	Azure	DevOps	captures	these
results	and	provides	real-time	reporting	on	the	testing	progress.	This	reporting	is	useful	for	testers	and	team	managers	as	it	enables	them	to	monitor	the	quality	of	the	application.Bugs	and	defect	managementIf	a	tester	identifies	a	bug	or	issue	during	the	testing,	they	can	create	a	bug	directly	from	the	test	case.	This	integrates	defect	management	into
your	testing	process,	ensuring	that	issues	are	properly	tackled	and	addressed.Integration	with	Azure	pipelineAzure	DevOps	test	plans	can	be	easily	integrated	with	Azure	CI/CD	pipelines.	This	integration	allows	you	to	automate	the	execution	of	test	cases	as	part	of	your	build	and	release	pipeline,	making	testing	an	integral	part	of	your	development
process.Azure	DevOps	promotes	collaboration	among	team	members.	Testers,	developers,	and	project	managers	can	work	together	within	the	same	environment,	making	communication	and	issue	resolution	more	efficient.Azure	DevOps	retains	historical	data,	allowing	you	to	analyze	trends,	track	improvements,	and	make	data-driven	decisions	for	future
releases.How	to	use	Azure	DevOps	test	plans?Learn	how	to	use	Azure	DevOps	Test	Plans	to	assist	test	objectives.	You	can	use	the	below-mentioned	sections	of	the	Microsoft	Azure	DevOps	“Test	Plans”	page	to	complete	the	associated	tasks.The	Mine	PageThe	Mine	Page	shows	a	list	of	test	plans	that	are	important	to	you,	including	both	team-related	plans
and	your	favorite	selections.	You	have	the	option	to	expand	or	hide	plans	for	each	team,	simplifying	the	process	of	finding	and	reviewing	particular	team	plans.	Besides,	you	can	use	the	shortcut	menu	for	tasks	like	editing	or	removing	the	chosen	plan.The	Filter	option	allows	you	to	sort	and	locate	test	plans,	specifically	when	dealing	with	a	long	list	of
plans.	You	can	apply	filters	based	on	the	plan’s	name,	associated	team,	current	status,	or	the	specific	development	iteration	it	belongs	to.	These	filters	help	you	narrow	down	your	search	and	find	the	plans	you’re	interested	in	more	effectively.The	“All”	pageThe	All	page	displays	a	list	of	all	available	test	plans.	You	can	apply	filters,	edit,	and	delete	plans
through	the	shortcut	menu,	just	as	you	would	on	the	Mine	page.	This	page	also	allows	you	to	include	any	test	plan	in	your	list	of	favorites.While	viewing	a	plan,	you	have	the	option	to	include	it	in	your	list	of	favorites.Test	plan	headerThe	test	plan	header	allows	you	to	perform	one	of	these	tasks:You	can	choose	to	mark	or	unmark	a	test	plan	as	a
favorite.Access	the	test	plan	you	like	the	most.Check	the	test	plan	iteration	path	to	see	if	it’s	marked	as	current	or	past.Click	on	the	view	report	link	to	go	to	the	test	progress	report.Return	to	the	All/Mine	test	plans	page	by	clicking	on	the	“All	test	plans”	option.Test	plan	Context	MenuSelect	“more”	option	to	access	a	test	plan’s	context	menu	which,	which
allows	you	to	perform	one	of	these	actions:Copy	test	plan:	Immediately	create	a	copy	of	an	existing	test	plan.Edit	test	plan:	Customize	the	test	plan	form	by	adding	details	to	the	description	or	discussion.Test	plan	settings:	You	can	configure	the	test	run	settings	which	helps	to	connect	them	with	the	build	or	release	properties,	and	set	up	the	test	outcome
settings.Adjust	settings	for	the	test	planSelect	the	test	plan	parameters	for	setting	up	test	executions	or	recording	test	results.Copy	test	planIt’s	a	good	practice	to	make	a	fresh	test	plan	for	each	sprint	or	release.	You	can	duplicate	the	test	plan	from	the	previous	cycle,	and	with	just	a	few	adjustments,	the	duplicated	plan	is	set	for	the	new	sprint.	You	can
perform	this	task	with	the	Copy	test	plan	menu	option.	Eventually,	you	can	create	a	copy	of	an	existing	test	plan	within	the	same	project.Test	suite	header	tasksThe	Test	suite	header	provides	users	the	capability	to	perform	the	following	tasks.Expand/Collapse:	This	toolbar	provides	options	to	expand	all	or	collapse	all,	which	can	be	used	to	reveal	or	hide
the	suite	hierarchy	tree.Show	test	nodes	from	child	suites:	Select	the	Show	test	points	from	the	child	suites	option	in	the	toolbar,	which	is	available	on	the	execute	tab.	This	option	enables	you	to	see	all	the	test	points	associated	with	the	current	suite	and	its	sub-suites	in	a	single	view.	This	simplifies	the	process	of	managing	test	points	as	you	won’t	need
to	navigate	individual	suites	one	by	one.Order	suites:	You	can	rearrange	the	sequence	of	suites	or	transfer	them	between	different	suite	hierarchies	in	the	test	plan	by	simply	dragging	and	dropping	them.Test	suites	Context	Menu	optionChoose	the	“more”	option	menu	to	access	a	test	suite’s	context	menu.	Then	proceed	with	one	of	the	actions
below:Create	new	test	suites:	You	have	the	option	to	create	new	suites	and	choose	from	three	different	types:Choose	Static	Suite	when	you	want	to	structure	your	tests	in	a	suite	that	resembles	a	folder.Select	the	Requirement-based	suite	for	a	direct	combination	of	requirementsChoose	a	Query-based	suite	to	manage	test	cases	based	on	specific	query
criteria.Assign	configurations:	Specify	browser	configurations	for	the	suite,	like	Chrome	and	Firefox.	These	configurations	will	be	used	for	all	test	cases	in	the	suite,	whether	they	already	exist	or	added	in	the	future.Export:	You	can	export	the	properties	of	the	test	plan,	the	properties	of	test	suites,	and	other	details	as	either	an	email	attachment	or	by
saving	them	as	a	PDF	document.Open	and	access	test	suite	work	item:	Allows	you	to	customize	the	work	item	form	for	the	test	suite,	granting	the	user	complete	control	over	the	work	item	fields.Assign	a	user	(developer/QA)	to	run	all	tests:	This	feature	is	highly	valuable	for	User	Acceptance	Testing	(UAT)	use	cases	in	which	multiple	testers	from	various
departments	can	execute	identical	tests.Rename/Delete:	You	can	use	these	options	to	manage	the	suite’s	name	or	to	remove	both	the	suite	and	its	contents	from	the	test	plan.Import	test	suites:	This	option	helps	to	bring	in	test	cases	located	in	different	suites	within	the	same	project	or	even	from	other	projects.Export	Test	Suite	DialogYou	can	have	the
option	to	reutilize	the	suites	you’ve	generated	and	include	them	in	your	current	test	suite.	Moreover,	you	can	bring	it	into	the	project,	test	plan,	and	test	suite	that	contains	the	test	you	want	to	import.Once	you	select	the	test	suite,	the	structure	of	the	chosen	suite	and	its	associated	test	cases	will	be	imported	into	the	current	plan.It	is	pertinent	to	mention
that	test	cases	are	added	as	references,	not	duplicates	or	copies.	Besides,	it’s	not	possible	to	import	test	suites	from	within	the	identical	test	plan.Execute	testsUse	the	“Execute”	tab	to	allocate	test	points	or	run	tests.This	leads	to	a	question	what	exactly	constitutes	a	“Test	point”?	Test	cases	by	themselves	cannot	be	directly	executed.	When	you	include	a
test	case	in	a	test	point,	it	generates	a	test	point.	A	test	point	contains	a	unique	combination	of	test	suites,	test	cases,	test	suites,	configuration,	and	a	tester.For	instance,	if	you	have	a	test	case	named	“Test	checkout	process”	and	you	add	two	configurations	for	Microsoft	Edge	and	Chrome	web	browsers,	you	have	two	test	points.	You	can	easily	execute
each	one	of	these	test	points.	Upon	the	execution	of	these	test	points,	results	are	generated.In	the	“Execute”	tab,	you’ll	find	the	most	recent	information	for	the	test	point.	The	same	test	cases	can	be	used	again	for	multiple	purposes.	By	including	them	in	a	test	plan	or	suite,	test	points	are	generated.	By	executing	test	points,	you	can	determine	the	quality
of	a	product	or	service	that	is	currently	in	the	development	phase.How	to	choose	a	test	plan?Below	are	the	steps	you	can	follow	to	choose	a	test	plan	in	Azure	DevOps.Sign	in	to	your	Azure	DevOps	account	by	providing	your	credentials.Go	to	the	“Test	Plans”	section	of	your	Azure	DevOps	project.	This	section	is	usually	found	in	the	left-hand	menu	or
through	the	“Test”	tab	at	the	top	of	the	page.In	the	“Test	Plans”	section,	you’ll	see	a	list	of	all	the	available	test	plans.	These	plans	are	organized	by	folders.	You	can	click	on	these	folders	to	view	the	test	plans	contained	within.Click	on	the	test	plan	you	want	to	work	with.	This	will	open	the	test	plan	and	allow	you	to	view	its	details	and	associated	test
cases.Inside	the	test	plan,	you	can	navigate	through	the	various	sections	like	test	suites,	test	cases,	test	runs,	and	results	to	manage	and	execute	your	tests.Depending	on	your	role	and	permissions,	you	can	create,	edit,	or	execute	test	cases	and	test	runs	within	the	selected	test	plan.How	to	create	a	test	plan	in	Azure	DevOpsYou	can	create	test	plans	and
test	suites	to	monitor	manual	testing	during	sprints.	This	way,	you	can	easily	determine	when	the	testing	for	a	particular	sprint	or	milestone	has	been	finished.	Below	are	the	practical	steps	to	create	test	plansFrom	the	web	portal,	open	your	project	and	navigate	to	the	“Test	Plans”.	If	you	already	have	a	test	plan,	select	“Test	Plans”	to	access	the	page	that
contains	a	list	of	all	the	test	plans.2.	Once	you	gain	access	to	the	“Test	plans”	page,	click	on	“New	Test	Plan”	to	create	a	new	test	plan	for	your	current	sprint.3.	In	the	New	Test	Plan,	enter	a	name	for	the	test	plan.	Ensure	that	the	area	path	and	iteration	are	configured	accurately,	then	click	the	“Create”	button.ConclusionCreate	test	plan	in	azure	devops
is	a	fundamental	process	for	ensuring	the	quality	and	reliability	of	your	software	projects.	By	following	the	steps	discussed	in	this	article,	you	can	easily	create	test	plans	in	Azure	DevOps	that	meet	your	project	requirements	and	goalsBy	using	Azure	DevOps	to	create	test	suites,	arrange	your	test	cases,	and	carry	out	tests	in	an	organized	way,	you’ll	have
valuable	tools	at	your	hand	that	help	you	monitor	the	quality	of	your	software	and	make	it	better.However,	it	is	important	to	realize	that	the	effectiveness	of	your	Azure	Test	Plans	not	only	relies	on	the	tools	but	also	on	your	testing	strategy,	collaboration,	and	the	quality	of	your	test	cases.To	ensure	the	success	of	your	testing	efforts,	it’s	essential	to
regularly	review	and	update	your	test	plans	and	test	cases	to	cater	to	constantly	changing	project	needs	and	requirements.	In	this	lab,	you	will	learn	how	to	use	Azure	DevOps	to	manage	your	project’s	testing	lifecycle.	This	project	will	guide	you	through	creating	test	plans	designed	to	efficiently	validate	your	software	milestones.	You	will	also	create	and
execute	manual	tests	that	can	be	consistently	reproduced	over	the	course	of	each	release.In	this	exercise,	you	will	learn	how	to	create	and	manage	test	plans,	test	suites	and	test	cases.	Navigate	to	your	team	project	on	Azure	DevOps.	Select	Test	Plans	to	navigate	to	the	Test	Hub.	The	test	hub	provides	a	central	place	for	all	test	planning,	execution,	and
analysis.	In	general,	every	major	milestone	in	a	project	should	have	its	own	test	plan.	Within	each	test	plan	are	test	suites,	which	are	collections	of	test	cases	(and	optionally	other	test	suites)	designed	to	validate	a	work	item,	such	as	a	feature	implementation	or	bug	fix.	Each	test	case	is	designed	to	confirm	a	specific	behavior	and	may	belong	to	one	or
more	test	suites.	The	Parts	Unlimited	project	has	one	test	plan,	which	is	under	the	Parts	Unlimited	Team	and	called	Parts	Unlimited_TestPlan1.	Select	the	Parts	Unlimited_TestPlan1	test	plan.	Select	the	suite	of	tests	for	the	story	As	a	customer,	I	would	like	to	store	my	credit	card	details	securely.	This	suite	of	tests	focuses	on	that	work	item,	which
happens	to	be	a	feature.	Note	that	the	work	item	numbers	will	vary	every	time	you	generate	demo	data	for	a	lab.	On	the	right	side	you	can	see	that	this	test	suite	has	three	test	cases	designed	to	confirm	expected	behavior	of	the	feature	implementation.	Double-click	the	Verify	that	user	is	allowed	to	save	his	credit	card	detail	test	case.	This	dialog	provides
all	the	info	you	need	on	this	test	case.	Locate	the	Related	Work	panel	and	note	that	this	test	case	is	linked	to	the	suite	it	belongs	to.	Click	the	work	item	to	navigate	to	it.	In	the	test	suite,	we	can	see	all	of	the	linked	work	items,	which	happen	to	be	the	test	cases.	However,	it’s	not	yet	associated	with	the	feature	it’s	designed	to	test,	which	we	can	link	now.
Click	Add	link	|	Existing	item.	Set	the	Link	type	to	Parent	and	search	for	“credit	card”.	Select	the	Feature	for	Credit	Card	Purchase.	Click	OK.	The	parent	feature	is	now	associated	with	the	suite	that	tests	it	and	anyone	can	navigate	between	them	to	view	their	relationship	relative	to	the	other	work	items	involved.	Click	Save	&	Close.	Dismiss	the	original
test	case	dialog.	Sometimes	a	set	of	test	cases	should	be	run	in	a	specific	order	to	maximize	efficiency.	Click	Order	tests	to	specify	the	order	these	test	cases	should	be	run.	While	these	test	cases	could	be	run	separately	to	confirm	the	behavior,	it	probably	makes	more	sense	to	run	the	test	case	that	rejects	invalid	cards	first.	Then,	the	tester	can	confirm
that	a	valid	card	can	be	saved,	followed	by	the	test	case	for	editing	a	saved	card.	Drag	and	drop	the	second	test	case	above	the	first	and	click	Done.	You	can	now	see	that	the	Order	has	been	updated	and	that	the	list	is	now	sorted	by	it.	Another	significant	aspect	of	testing	has	to	do	with	the	environment	each	test	is	run	in.	For	this	web	app,	the	browser
and	operating	system	are	key	considerations.	Right	now	all	the	tests	only	use	one	configuration:	Windows	10.	Select	the	Configurations	tab.	Note	that	there	is	one	existing	configuration	for	Windows	10.	Each	test	configuration	includes	a	name	and	a	description,	as	well	as	a	set	of	customizable	Configuration	variables.	This	project	has	one	configuration
variable	set	for	Operating	System.	You	can	easily	add	more	and/or	edit	the	available	entries	for	each.	Click	Add	configuration	variable.	Select	the	Browser	variable	and	set	it	to	Microsoft	Edge.	Click	Save	to	save	the	configuration.	Now	let’s	suppose	the	test	team	has	acquired	an	iPhone	X	and	wants	to	add	it	into	the	test	matrix.	It’s	really	easy	to	register
this	environment	as	a	new	configuration	so	that	test	cases	can	specify	it.	However,	before	adding	it,	we’ll	need	an	Operating	System	option	for	iOS	10.	Click	the	Operating	System	configuration	variable.	Click	Add	new	value	and	add	an	entry	for	iOS	12.	Click	Save.	Now	we	have	everything	we	need	to	add	the	iPhone	X.	Click	the	Add	dropdown	and	select
New	test	configuration.	Set	the	Name	to	“iPhone	X”.	Click	Add	configuration	variable	twice	and	set	the	Browser	to	Safari	and	Operating	System	to	iOS	12.	Click	Save	to	save	the	new	configuration.	Return	to	the	Test	Plans	tab.	Click	the	dropdown	next	to	the	test	suite	we’ve	been	working	with	so	far	and	select	Assign	configurations	to	test	suite.	Check	the
iPhone	X	option	and	click	Save.	Notice	that	each	test	case	has	been	duplicated	with	an	additional	configuration	for	iPhone	X.	Now	each	environment	can	be	tested	and	tracked	separately.	Expand	the	dropdown	next	to	the	test	plan	and	select	New	static	suite.	A	static	suite	of	test	cases	is	a	suite	where	the	cases	have	been	manually	assigned.	You	can	also
create	suites	based	on	common	requirements	(requirement-based	suite)	or	a	query	of	test	cases	and/or	work	items	(query-based	suite).	Set	the	name	of	the	new	suite	to	“Shipping	tests”.	These	tests	will	all	focus	on	functionality	related	to	shipping.	Remember	that	you	can	easily	share	test	cases	across	suites,	so	there’s	minimal	redundancy	when	having	a
lot	of	overlapping	suites.	Expand	the	dropdown	next	to	the	newly	created	suite	and	select	New	requirement-based	suite.	You	could	customize	the	query	used	to	specify	which	requirements	are	retrieved,	but	just	leave	the	defaults	and	click	Run	query.	Locate	and	select	the	three	product	backlog	items	related	to	shipping.	Click	Create	suites	to	create	a	test
suite	for	each.	Select	one	of	the	newly	created	suites,	such	as	the	one	associated	with	tracking	package	status.	While	you	can	create	test	cases	one	at	a	time,	it’s	sometimes	easier	to	use	a	grid	layout	to	quickly	add	many	test	cases.	In	the	test	cases	panel,	select	New	|	New	test	case	using	grid.	Enter	a	few	test	cases	and	click	the	Save	All	button.	The	Title
will	be	the	eventual	title	of	the	test	case.	Step	Action	will	be	the	first	(and	possibly	only)	step	of	the	test.	If	that	step	has	an	expected	result,	you	can	specify	it	as	Step	Expected	Result.	You	can	optionally	continue	to	add	and	edit	work	items	in	the	grid	view.	When	satisfied,	return	back	to	the	list	view	by	clicking	the	View:	Grid	toggle.	The	list	view	shows
the	same	data,	but	in	a	different	view.	Another	option	to	create	suites	is	via	work	item	query.	Expand	the	dropdown	next	to	the	Shipping	tests	suite	and	select	new	query-based	suite.	Let’s	say	you	wanted	to	create	a	test	suite	out	of	test	cases	related	to	shipping	in	the	project.	Change	the	Work	Item	Type	to	Microsoft.TestCaseCategory	to	search	for	test
cases	and	click	Run	query.	You	now	have	a	list	of	test	cases	that	you	can	select	to	create	suites	from,	if	you	choose.	Press	Esc	to	close	the	dialog.	In	this	exercise,	you	will	learn	how	to	create	a	manual	test	plan	and	populate	it	with	steps.	The	plan	can	later	be	run	to	confirm	the	expected	behavior	of	your	software.	In	this	lab,	we’re	going	to	focus	on
creating	a	new	manual	test	case	and	running	it.	Install	Google	Chrome	from	.	The	rest	of	this	exercise	will	use	Chrome	as	its	browser.	If	you’re	already	using	Chrome,	just	open	a	new	instance	for	the	next	set	of	steps.	Navigate	to	the	Azure	DevOps	Marketplace	at	.	Select	the	Azure	DevOps	tab.	Search	for	“feedback”	and	click	the	Test	&	Feedback
extension.	Click	on	Install	button	on	the	details	page.	Click	Install	for	the	Chrome	extension.	In	the	Chrome	Web	Store,	click	Add	to	Chrome.	Confirm	the	installation	when	asked.	To	open	the	extension,	click	the	extension	icon	that	will	appear	on	the	right	of	the	address	bar.	Select	the	Connection	Settings	tab.	Enter	the	URL	of	your	Azure	DevOps
instance,	such	as	“	”,	as	the	Server	URL	and	click	Next.	The	extension	can	be	used	in	two	modes:	Connected	and	Standalone	mode.	If	you	have	Azure	DevOps	or	Team	Foundation	Server	(TFS),	select	Connected	mode.	Standalone	mode	is	for	users	who	don’t	have	Azure	DevOps	or	TFS	and	want	to	use	the	extension	to	file	bugs	and	share	the	report	with
their	team.	After	connecting	to	Azure	DevOps,	you	will	need	to	select	the	team	you	want	these	efforts	associated	with.	Select	the	Parts	Unlimited	Team	under	the	Parts	Unlimited	project	and	click	Save	to	continue.	In	Chrome,	navigate	to	your	Parts	Unlimited	project.	As	before,	navigate	to	the	Test	Plans	hub.	Expand	the	dropdown	next	to	the	test	plan	and
select	New	static	suite.	Name	the	new	suite	“End-to-end	tests”	and	press	Enter.	From	the	Tests	tab,	select	New	|	New	test	case	to	create	a	new	test	case.	In	the	Title	box,	type	“Confirm	that	order	number	appears	after	successful	order”	as	the	name	of	the	new	test	case.	At	this	point,	we’re	ready	to	add	steps	to	this	manual	test.	Each	step	includes	an
Action,	which	describes	the	action	the	tester	needs	to	perform.	Optionally,	a	step	can	include	an	Expected	Result,	which	describes	the	expected	result	of	the	given	action.	In	the	Steps	panel,	create	a	step	for	each	of	the	following	Actions,	only	one	of	which	has	an	Expected	Result.	Action	Expected	Result	Open	project	site			Click	Brakes			Click	Disk	and	Pad
Combo			Click	Add	to	Cart			Click	Checkout			Enter	@Email,	@Password			Enter	@Name,	@Phone,	@Email,	@Address,	@City,	@State,	@PostalCode,	@Country,	@Promo			Click	Submit	Order			Confirm	order	page	has	order	#	Order	#	should	appear	on	order	confirmation	page	Log	out			Close	browser			Note:	If	you	end	up	with	an	extra	empty	step,	delete	it.
At	this	point,	the	Steps	panel	should	look	similar	to	the	following:	Note	the	“Enter	@Email,	@Password”	and	“Enter	@Name,	@Phone,	@Email,	@Address,	@City,	@State,	@PostalCode,	@Country,	@Promo”	steps.	In	these	steps,	we	used	the	@	sign	to	indicate	that	there	were	iteration-specific	variables	to	be	used	during	the	manual	test	pass.	We	can
define	which	variables	to	use	by	scrolling	down	to	the	Parameter	Values	section	of	this	form	and	entering	them	for	each	iteration.	Note	that	you	may	need	to	use	the	scroll	bar	on	the	far	right	side	of	the	test	case	dialog	to	view	this	section.	Use	the	following	table	to	set	up	values	for	two	iterations.	Fields	Iteration	1	Iteration	2	Email	admin@test.com
sachin@test.com	Password	P@ssw0rd	P@ssw0rd	Name	Admin	User	Sachin	Raj	Phone	425-555-1234	555-555-5555	Address	One	Microsoft	Way	Two	Tailspin	Trail	City	Redmond	Springfield	State	WA	IL	PostalCode	98052	11135	Country	USA	USA	Promo	FREE	FREE	The	Parameter	Values	section	should	now	look	like	this.	Note	that	you	can	enter	as	many
iterations	as	you	need	to	fully	test	the	breadth	of	the	scenario.	Click	Save	&	Close	to	save	the	test	case.	In	this	task,	you	will	learn	how	to	run	the	manual	test	plan	that	we	created	earlier.	Note	that	the	process	for	triggering	an	automated	test	run	follows	a	similar	workflow.	You	can	learn	more	about	that	in	the	documentation.	Right-click	the	test	case
created	earlier	and	select	Run	with	options	to	begin	a	manual	test	run.	There	are	a	few	options	that	you	can	use	to	customize	each	test	run.	The	first	option	is	to	select	a	Runner,	which	will	be	the	browser	in	this	scenario.	Next,	you	may	have	the	option	to	specify	which	kinds	of	data	to	collect.	Finally,	you	may	optionally	specify	which	build	is	being	tested
to	make	it	easier	to	associate	the	results	with	the	build	they	were	from.	Click	OK	to	continue.	If	the	Test	Runner	window	does	not	appear,	check	to	see	if	it	was	blocked	by	the	pop-up	blocker.	If	so,	click	the	Pop-up	blocker	button,	select	Always	allow	pop-ups…,	and	then	click	Done.	You	can	then	launch	the	test	run	again	with	success.	In	the	Test	Runner
window,	expand	the	Test	1	of	1:	Iteration	1	dropdown.	Note	that	there	are	two	iterations:	one	for	each	set	of	parameters	specified	in	the	test	case.	In	the	first	iteration,	the	admin@test.com	account	is	used.	In	the	second,	sachin@test.com	will	be	used.	The	first	step	in	the	test	is	to	open	the	project	site.	To	do	this,	switch	to	the	Visual	Studio	instance	that
has	the	Parts	Unlimited	solution	loaded.	From	the	IIS	Express	target	dropdown,	select	Browse	With….	Select	Google	Chrome	and	click	Browse.	If	you’re	working	on	a	large	screen,	it	may	be	easier	to	resize	the	new	window	to	fit	next	to	the	Test	Runner	window.	Otherwise	you	can	just	switch	back	and	forth.	Once	the	site	loads,	return	to	the	Test	Runner
and	click	the	Pass	test	step	button.	As	you	complete	the	next	steps	of	this	test,	be	sure	to	check	the	Pass	test	step	buttons	for	them	as	well.	The	next	step	is	to	click	the	Brakes	menu	item.	Then	click	the	Disk	and	Pad	Combo	product.	The	next	step	is	to	click	Add	to	cart.	On	the	next	page,	click	Checkout.	Log	in	using	the	credentials	specified	in	the	next
step.	Unfortunately,	this	will	fail	because	there	isn’t	an	admin@test.com	account.	The	Test	Runner	provides	three	valuable	ways	to	record	media	from	a	test	run.	The	first	option	is	to	take	screenshots.	The	second	is	to	capture	each	user	action	in	an	image	action	log.	The	final	is	to	record	the	screen	as	a	video.	Click	the	Capture	screenshot	button	to	take	a
screenshot.	Crop	the	screen	down	to	show	the	login	form	and	error	message.	Specify	the	name	“No	admin	account”	and	click	the	Confirm	button.	Right-click	the	failed	step	and	select	Add	comment.	Enter	a	comment	of	“Admin	account	does	not	exist	by	default”	and	fail	the	test	using	the	Fail	test	step	button.	Click	Create	bug	to	log	a	new	bug.	Enter	the
bug	title	of	“Admin	account	does	not	exist	by	default”	and	click	Save	&	Close	to	log	the	bug.	Since	the	test	cannot	be	completed	due	to	a	bug	not	directly	related	to	the	functionality	being	tested,	expand	the	Mark	test	case	result	dropdown	and	select	Block	test.	Click	Save	and	close	to	save	the	test	run.	Close	the	test	browser	windows.	In	this	task,	you	will
learn	how	to	review	the	results	of	a	manual	test	run.	Return	to	the	browser	window	hosting	the	Test	Hub.	Select	the	Runs	tab.	Double-click	the	most	recent	test	run	to	open	it.	You	may	need	to	refresh	the	data	to	see	it.	The	Run	summary	tab	provides	an	overview	of	the	test	run,	as	well	as	high-level	details	on	the	results	of	all	tests	included	as	part	of	the
run.	Select	the	Test	results	tab.	This	tab	lists	the	results	of	each	individual	test	case	included	in	the	run	along	with	their	results.	Since	there	was	only	one	test	case	included	here,	double-click	it	to	open.	You	can	review	all	details	for	this	particular	test	case	run	from	here.	Scroll	to	the	bottom	to	locate	the	iterations.	Expand	the	first	iteration.	Review	the
results	of	each	step	in	this	iteration,	as	well	as	the	failed	login	step,	which	shows	the	screenshot	attached	during	the	test	run.	In	this	task,	you	will	learn	how	to	create	shared	steps.	A	shared	step	combines	multiple	steps	that	are	commonly	performed	in	sequence	into	a	single	logical	step,	which	can	be	shared	across	tests.	If	the	process	defined	by	the
shared	steps	ever	changes	in	the	future,	you	can	update	the	shared	step	in	one	place	and	it	will	be	reflected	in	all	tests	that	reference	it.	Click	the	test	case	link	in	the	Summary	section.	Double-click	the	case	to	open	it	in	the	test	case	editor.	Select	steps	2-4	(use	Shift+Click)	and	click	the	Create	shared	steps	button.	Set	the	name	of	these	shared	steps	to
“Add	Disk	and	Pad	Combo	to	cart”	and	click	Create.	Now	you	can	see	the	previous	steps	replaced	with	the	shared	steps.	Double-click	the	shared	steps	to	open.	If	necessary,	you	can	revisit	these	steps	later	on	to	update	them	for	new	requirements.	Press	Esc	to	close	the	Shared	Steps	dialog.	Click	Save	&	Close	to	save	the	test	case.	DSA	to	Development:	A
Complete	GuideBeginner	to	AdvanceJAVA	Backend	Development	-	LiveIntermediate	and	AdvanceTech	Interview	101	-	From	DSA	to	System	Design	for	Working	ProfessionalsBeginner	to	AdvanceFull	Stack	Development	with	React	&	Node	JS	-	LiveBeginner	to	AdvanceC++	Programming	Course	Online	-	Complete	Beginner	to	AdvancedBeginner	to
AdvanceJava	Programming	Online	Course	[Complete	Beginner	to	Advanced]Beginner	to	AdvancePage	2Our	website	uses	cookiesWe	use	cookies	to	ensure	you	have	the	best	browsing	experience	on	our	website.	By	using	our	site,	you	acknowledge	that	you	have	read	and	understood	our	Cookie	Policy	&	Privacy	Policy	Strukturera	krav	och	säkerställ	att	de
uppfylls	Läs	mer	Skapa	testfall,	bygg	testscenarion	och	involvera	verksamheten	Läs	mer	Rapportera	och	prioritera	buggar	direkt	i	verktyget	Läs	mer	Följ	progressen	i	projektet	och	insikter	dela	med	ditt	team	Läs	mer	Jobba	smartare	med	Reqtest	inbyggda	AI	Läs	mer	Koppla	ihop	Reqtest	med	andra	verktyg	Läs	mer	Visualisera	planeringen	och	förenkla
samarbetet	i	teamet	Läs	mer	Bjud	in	och	utvärdera	potentiella	leverantörer	Läs	mer	When	a	configuration	is	assigned	to	a	Test	Suite,	all	the	TestCases	inside	the	suite	will	have	the	same	configuration.	Let	us	see	how	to	assign	a	configuration	to	a	Test	suite	in	the	below	steps	Step	1:	Go	to	TestPlans	in	Azure	DevOps	Step	2:	Click	on	the	TestPlan	for	which
you	have	to	assign	a	configuration	Step	3:	And	then	click	on	the	3	dots	next	to	it	as	shown	Step	4:	Select	the	configuration	which	you	have	to	assign	in	the	next	window	and	then	click	on	the	save	button	Step	5:	Selected	configuration	will	be	assigned	to	all	the	testcases	in	the	TestPlan	You	can	also	assign	a	configuration	to	individual	TestSuite	as	well	to
the	TestCases	Share	—	copy	and	redistribute	the	material	in	any	medium	or	format	for	any	purpose,	even	commercially.	Adapt	—	remix,	transform,	and	build	upon	the	material	for	any	purpose,	even	commercially.	The	licensor	cannot	revoke	these	freedoms	as	long	as	you	follow	the	license	terms.	Attribution	—	You	must	give	appropriate	credit	,	provide	a
link	to	the	license,	and	indicate	if	changes	were	made	.	You	may	do	so	in	any	reasonable	manner,	but	not	in	any	way	that	suggests	the	licensor	endorses	you	or	your	use.	ShareAlike	—	If	you	remix,	transform,	or	build	upon	the	material,	you	must	distribute	your	contributions	under	the	same	license	as	the	original.	No	additional	restrictions	—	You	may	not
apply	legal	terms	or	technological	measures	that	legally	restrict	others	from	doing	anything	the	license	permits.	You	do	not	have	to	comply	with	the	license	for	elements	of	the	material	in	the	public	domain	or	where	your	use	is	permitted	by	an	applicable	exception	or	limitation	.	No	warranties	are	given.	The	license	may	not	give	you	all	of	the	permissions
necessary	for	your	intended	use.	For	example,	other	rights	such	as	publicity,	privacy,	or	moral	rights	may	limit	how	you	use	the	material.	Let’s	suppose,	you	want	to	create	a	test	plan	document	for	your	web	application,	mobile	or	any	other	software.	You	search	“sample	test	plan	document”	on	the	internet	and	come	across	numerous	test	plan	samples.	By
looking	at	the	sample	test	plans,	you	understand	that	a	software	test	plan	document	is	a	guide	book	for	testing	process.	It	is	required	for	the	successful	execution	of	testing	process	for	a	project.	It	contains	comprehensive	information	to	carry	out	the	testing	activities.	A	software	test	plan	document	is	divided	into	different	sections	such	as	introduction,
objectives,	scope,	test	items,	features	to	be	tested,	and	environmental	needs.	There	are	several	test	plan	samples,	each	with	different	sections.	Are	you	wondering	what	the	10	attributes	every	sample	test	plan	document	must	have?	No	problem!	We	discuss	them	in	detail	here:	Introduction	A	software	test	plan	document	begins	with	the	introduction	of	the
project	and	the	product	being	tested.	Include	the	following	details	in	the	introduction	of	your	test	plan:	Project	Background:	Explain	a	brief	overview	of	the	project	and	its	background.	Purpose	of	Document:	The	purpose	of	test	plan	document	is	to	provide	details	on	how	testing	process	will	be	conducted	for	a	given	project.	Objectives	and	Tasks:	This
section	contains	your	testing	objectives	and	tasks.	Scope:	In	this	section	of	test	plan	document,	the	scope	of	testing	is	identified	at	high	level.	You	might	also	need	to	explicitly	mention	some	features	which	are	out	of	scope.	Test	Items:	List	down	the	test	items	with	release	version	and	module	details	that	are	targeted	for	testing.	References:	In	the
references	section	of	test	plan	document,	list	down	the	documents	that	are	and	can	be	referred	to	during	execution	of	testing	process.	Features	to	be	tested	In	this	section	of	the	test	plan	document,	list	down	the	features	and	functions	in	details	that	you	have	planned	to	test.	These	features	should	fall	under	the	testing	scope	which	has	already	been
identified	in	the	introduction	section.	For	each	feature	to	be	tested,	define	the	references	of	requirement	with	requirements	ID	so	that	the	quality	assurance	team	can	refer	to	it.	Describe	any	special	consideration	or	details	about	the	particular	feature,	if	required.	Features	not	to	be	tested	There	can	be	some	features	or	functionalities	which	are	neither
clearly	out	of	scope	nor	could	be	tested	due	to	any	reason.	These	features	should	be	mentioned	in	your	software	test	plan	document	in	the	‘Features	not	to	be	tested’	section.	Also,	define	the	reason	why	a	certain	feature	or	functionality	cannot	be	tested.	Item	Pass/Fail	Criteria	Define	the	success	criteria	of	your	tests	in	the	test	plan	document.	You	can
encounter	three	situations	while	executing	the	test	cases	–	normal,	suspension,	resumption.	Let	us	have	a	look	at	the	item	pass/fail	criteria	from	a	sample	test	plan	document	of	web	application:	Suspension	Criteria:	Any	situation	which	impedes	the	ability	to	continue	testing	or	value	in	performing	testing	lead	to	suspend	testing	activities.	Resumption
Criteria:	When	the	problem	that	caused	the	suspension	had	been	resolved,	testing	activities	can	be	resumed.	Approval	Criteria:	An	item	will	be	considered	as	‘Pass’	if	it	meets	the	‘Expected	Outcome’	defined	in	the	corresponding	test	case.	Approach	Test	approach	is	the	backbone	of	the	entire	testing	process.	Hence,	it	is	one	of	the	important	attribute
that	every	test	plan	document	has.	In	test	approach,	it	is	clearly	stated	what	testing	techniques	will	be	applied	during	the	testing	process.	Your	testing	approach	may	combine	more	than	one	testing	technique	such	as	exploratory	testing,	functional	testing,	regression	testing,	user	interface	testing,	component	testing,	integration	testing,	penetration
testing.	Specify	the	tools	and	required	human	resource	to	perform	the	testing	activity.	The	approach	should	be	described	in	such	a	manner	that	major	testing	tasks	could	be	identified.	You	need	to	see	‘Features	to	be	tested’	section	to	adequately	define	the	testing	approach	in	your	test	plan.	Test	deliverables	At	the	end	of	every	testing	activity,	there	is	a
deliverable.	Include	the	list	of	test	deliverables	in	your	test	plan	document.	Test	deliverables	might	include	test	plan	document,	test	cases,	issues	report,	and	performance	report.	Environmental	Needs	Software	test	plan	document	contains	details	of	the	specifications	needed	to	set	up	test	environment.	There	can	be	hardware	and	software	needs	for	your
product.	Hardware	Needs	Hardware	needs	might	include	the	device	specifications	such	as	desktop	computer,	laptop,	tablet	PC,	smartphone.	It	can	also	include	a	specific	screen	size,	memory	requirement	or	processor	speed.	Moreover,	there	can	be	some	requirement	related	to	your	internet	connection	–	whether	the	device	should	have	Wi-Fi	or	LAN
connection,	what	should	be	the	download	and	upload	speed	of	your	Internet.	You	might	also	need	extra	hardware	for	requirements	where	you	might	need	to	simulate	the	load	of	concurrent	users.	Software	Needs	Software	needs	include	the	operating	system	specifications	such	as	Windows,	Mac,	Linux	or	Android.	There	can	be	further	detail	of	version	for
the	operating	system.	If	you	are	testing	a	web	application,	you	need	to	list	down	the	browsers	in	your	test	plan	on	which	you	will	perform	the	testing.	You	might	need	to	use	any	tools	or	software	to	perform	testing	or	to	set	up	the	test	environment.	List	down	all	required	software	and	make	sure	you	procure	the	required	software	on	time	so	you	can
proceed	with	the	testing	process	as	per	schedule.	Roles	and	Responsibilities	A	test	plan	document	contains	resource	requirements.	It	also	contains	details	of	roles	and	the	associated	responsibilities	of	the	individuals.	If	you	have	a	big	team,	you	can	define	roles	and	responsibilities	in	the	form	of	a	table.	We	are	sharing	‘Roles	and	Responsibilities’	section
from	a	sample	test	plan	document:	S.	No	Role	Responsibilities	Name	1	QA	Manager	Review	test	cases,	review	and	approve	the	issues	2	Senior	SQA	Assigns	tasks,	tracks	the	testing	progress	3	QA	Prepare	test	cases,	set	up	test	environment	4	Tester	Execute	test	cases,	reports	the	issues	Schedule	A	test	plan	document	is	a	guide	book	to	your	testing
process.	Schedule	is	the	essential	attribute	that	defines	the	timelines	for	your	testing	activities.	Make	sure	that	you	plan	your	schedule	in	accordance	with	the	development	schedule.	Remember	that	you	cannot	test	a	feature	or	module,	unless	it	is	developed.	This	develops	a	high	dependency	of	quality	assurance	team	over	development	team.	If
development	team	lags	behind	the	schedule,	your	testing	schedule	will	be	badly	disturbed.	It	is	recommended	to	isolate	your	testing	activities	and	continue	completion	of	your	tasks,	while	the	product	is	being	developed.	For	example,	you	can	gain	business	understanding	and	prepare	test	cases	before	any	artefact	is	available	for	testing.	We	have	shared	a
schedule	included	in	the	sample	test	plan	of	web	application.	You	might	add	or	remove	columns	in	the	schedule	table	as	needed.	S.	No	Task	Dependency	Deliverable	Week	1	Business	understanding	0-2	2	Prepare	test	cases	Task	1	Test	cases	3-4	3	Execute	test	cases	Task	2	4-7	4	Report	issues	Task	3	Issues	log	4-7	5	Test	fixes	8-9	6	Report	the	findings	Test
report	10	Risks	and	Contingencies	Risk	is	the	uncertainty	which	is	associated	with	a	future	event	which	may	or	may	not	occur	and	a	corresponding	potential	for	loss.	Being	the	project	manager,	it	is	very	important	that	you	identify	the	risks	in	your	test	plan.	Schedule	Risk	Meeting	the	planned	deadlines	plays	a	vital	role	in	the	successful	completion	of	a
project.	Before	you	prepare	your	risk	mitigation	strategy,	it	is	important	to	understand	the	reasons	that	increases	the	likelihood	of	risk	occurrence.	You	might	lag	behind	your	schedule	because	of	any	of	the	following	reasons:	S.	No	Risk	Mitigation	Techniques	1	Inaccurate	time	and	effort	estimation	Use	PERT	techniques	Use	expert	judgment	techniques	to
assure	the	accuracy	of	estimates	2	Inability	to	foresee	the	total	scope	Create	work	breakdown	structure	for	your	project	Analyse	the	‘Features	to	be	tested’	thoroughly	3	Unexpected	expansion	of	scope	Include	contingencies	in	your	schedule	4	Inability	to	complete	tasks	at	the	estimated	time	Track	the	progress	of	individuals	on	daily	basis	Address	any
issues	that	are	hindering	the	completion	of	tasks	Train	resources	to	upgrade	their	skill	set	Provide	a	realistic	estimate	while	making	schedule	Budget	Risks	Budget	is	a	crucial	element	in	any	project.	It	not	only	affects	the	success	of	your	project,	but	it	also	affects	your	relationship	with	your	client.	It	is	very	important	to	control	and	mitigate	any	risks
associated	with	budget	to	prevent	any	unpleasant	happening	that	might	strain	your	reputation.	The	more	accurate	your	budget	is,	the	better	your	will	be	able	to	manage	your	project	and	stakeholders.	We	have	listed	a	few	budget	risks	below:	S.	No	Risk	Mitigation	Techniques	1	Wrong	estimation	Prepare	a	rough	order	magnitude	estimate	initially	Prepare
detailed	budget	estimate	when	tasks	and	activities	are	clearly	defined	2	Resource	budget	over	run	Track	and	control	that	resources	do	not	take	more	than	the	planned	time	for	completion	of	tasks	3	Cost	overrun	due	to	scope	Control	the	scope	of	the	project	Define	a	process	for	approval	of	‘Change	Requests’	along	with	their	costs	4	Indirect	costs	Include
the	estimates	for	overhead	costs,	general	and	administrative	costs	Operational	Risks	Operational	risks	are	associated	with	the	day	to	day	activities	of	the	project.	Operational	risks	may	eventually	lead	to	improper	process	implementation	or	a	failed	system.	Operational	activities	are	performed	repetitively;	this	means	that	operational	risks	can	be	mitigated
by	following	company’s	standard	procedures	on	regular	basis.	Quality	control	team	plays	a	vital	role	in	overall	improvement	of	the	software	development	process.	While	including	operational	risks	in	your	test	plan,	consider	the	following	risks:	S.	No	Risk	Mitigation	Techniques	1	Failure	to	address	priority	conflicts	Clearly	prioritize	the	requirements	with
stakeholders	Use	adaptive	planning	approach	to	accommodate	priorities	2	Insufficient	resources	Control	and	track	whether	the	project	activities	are	progressing	as	planned	3	Insufficient	resources	Estimate	the	required	resources	and	procure	them	4	No	proper	subject	training	Conduct	staff	trainings	if	needed	Use	the	right	people	for	the	job	Outsource
resources	5	No	resource	planning	Prepare	human	resource	plan	6	No	communication	in	team	Conduct	staff	trainings	if	needed	Use	the	right	people	for	the	job	Outsource	resources	Technical	Risks	Technical	risks	can	still	exist	even	if	you	have	planned	everything	flawlessly.	There	is	an	increased	likelihood	of	technical	risks	when	the	technology	is	new.
Other	technical	risks	include	the	following:	S.	No	Risk	Mitigation	Techniques	1	Changing	requirements	Use	agile	software	development	method	2	No	advanced	technology	available	or	the	existing	technology	is	in	initial	stages	Conduct	trainings	to	build	expertise	Build	a	relationship	of	trust	with	client	and	prepare	his	mind	for	the	technological	risks	Give
time,	effort	and	budget	estimate	keeping	this	point	in	mind	3	Complex	product	Use	experienced	people	for	the	job	with	the	required	skill	set	Break	the	problem	into	smaller	parts	4	Difficult	integration	of	project	modules	Perform	impact	analysis	Exhaustively	perform	regression	testing	Test	Plan	Example	Here	is	a	sample	test	plan	that	gives	a	list	of	items
you	should	include	in	your	test	plan.	Introduction	Objectives	&	Tasks	Scope	Test	Strategy	Alpha	Testing	(Unit	Testing)	System	&	Integration	Testing	Performance	&	Stress	Testing	User	Acceptance	Testing	Batch	Testing	Automated	Regression	Testing	Beta	Testing	Hardware	Requirements	Environment	Requirements	Test	Schedule	Control	Procedures
Features	to	Be	Tested	Features	Not	to	Be	Tested	Roles	&	Responsibilities	Schedules	Dependencies	Risks/Assumptions	Tools	Approvals	Recap	Let’s	have	a	quick	review	of	what	we	have	understood	till	now.	We	know	a	test	plan	document	is	vital	for	the	successful	execution,	tracking	and	controlling	of	testing	activities	in	a	project.	It	contains	all	necessary
information	to	guide	the	testing	process.	A	software	test	plan	document	is	divided	into	various	sections.	We	had	a	detailed	look	on	the	top	10	attributes	every	sample	test	plan	document	must	have.	First	part	is	the	introduction	which	provides	a	brief	overview	of	the	project	background,	scope,	testing	objectives	and	references.	Then,	we	define	a	list	of
features	that	should	be	tested	and	the	features	that	should	not	be	tested,	along	with	success	criteria.	This	enables	us	to	scheme	a	detailed	testing	approach	for	the	identified	features	to	be	tested.	The	output	of	testing	activities	is	the	test	deliverables.	We	also	need	to	include	any	specific	environmental	needs	to	set	up	the	test	environment.	Moving	on	to
the	resource	and	task	planning,	we	define	the	roles	along	with	schedule	of	tasks.	Lastly,	we	include	the	important	part	of	risks	and	contingencies.	Next	time	you	make	a	test	plan	document,	do	not	forget	to	include	the	top	10	attributes	in	your	test	plan	document.	If	you	know	of	other	important	attributes	that	should	be	included	in	a	test	plan,	share	them
in	the	comments	below.

